
Student t Distribution with 2 Populations

Objectives:

Use a student-t distribution to determine which sample has the higher mean
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Population APopulation B

Comparison of Elements ( chance to win one game )

Assume:

A and B be normally distributed distributions with unknown means and variances.

na and nb samples are taken from population A and B respectfully.

What is the probability that the next value from A will be larger than B?

p(xa > xb) = ?

Example:  Two people are playing hungry-hungry hippo (press a button as fast as you can for 5 seconds.  The

winner is the person who hit their button the most number of times.) 

In the last 5 games, the score for A and B were:

A: 78    79    95    94    94 xa = 88.0 sa = 8.69

B: 77    68    77    86    75 xb = 76.6 sb = 6.43

What is the chance that A will win the next game?
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Solution:  Create a new variable W

W = A - B

If A and B were normally distributed, then W would be normally distributed as well with

µw = µa − µb

σw
2 = σa

2 + σb
2

Actually, since the mean and variance are unknown but estimated from the data, A and B have a student t

distribution with

xw = xa − xb = 11.40

sw
2 = sa

2 + sb
2

= 10.812

for a t-score of

t = 


xw

sw


 =






xa−xb

sa
2
+sb

2




 = 1.054

Now this is where it gets tricky:  how many degrees of freedom does w have ?

If na were infinity, you would know  precisely (the standard deviation drops as the square root of sample size).µa

In that case, this reverts to the previous lecture:  comparison of population B to a constant.  The degrees of

freedom are then

na = infinity

d.f. = nb - 1

Similarly, if nb were infinity, then 

nb = infinity

d.f. = na - 1

If na = nb, you could have

na + nb degrees of freedom (treat this as one big data set), or

na degrees of freedom (subtract xb from xa in a one-to-one mapping to W)

The actual degrees of freedom are (from Wikipedia)

d.f. =










s
1
2

n1




 +





s
2
2

n2
















s1

2
/n1




n1−1






+






s2

2
/n2




n2−1






= 7.37 ≈ 7

With this, you can convert the t-score (1.054) to a probability using a t-table (or StatTrek)
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p = 0.8366

Team A has an 83.66% chance of winning the next game.
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The probability that the next sample from A will be larger than the next sample from B is 0.8366

  = 1.054  with 7 degrees of freedomt =





xa−xb

sa
2+sb

2






Comparison of Means ( chance to win an infinite series ) 

A slightly different question is

Which population has the higher mean?

Essentially, 

The previous question was who would win the next game of hungry-hungry hippo.  

This question is who would win a match with an infinite number of games?

With an infinite number of games, even the slightest edge would eventually be telling.
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Slightly different question:  Which population has the larger mean?
note that the standard deviation for the mean drops by the square root of the sample size
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Assume first that A and B are normally distributed.  The statistic  then has a normal distributionx

x~Nµ, σ2

n



As the sample size goes to infinity, the estimate of the mean converges to the true mean. 

If you want to compare two means,  and , then create a new variable:µa µb

W = µa − µb

W is also normally distributed

W~N(µw, σw
2 )

where

µw = µa − µb

σw
2 =

σa
2

na
+

σb
2

nb

Now, suppose you estimate the variance, creating a student-t distribution.  Then

W = xa − xb

will have a student t-distribution with

sw
2 =

sa
2

na
+

sb
2

nb

The t-score is then

t = 


xw

sw


 =









xa−xb

sa
2

na
+

s
b
2

nb









= 2.358

Once again, the degrees of freedom are

d.f. =










s
1
2

n1




 +





s
2
2

n2
















s1

2
/n1




n1−1






+






s2

2
/n2




n2−1






= 7.37 ≈ 7

Using a t-table, a t-score of 2.3568 corresponds to a probability of 0.9747

There is a 97.47% chance that Team A has the higher mean (and would win an infinite series).
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Hungry-Hungry Hippo Example:

Xw = mean(A) - mean(B)

Xw =   11.4000

Sw = sqrt( var(A)/5 + var(B)/5 )

Sw =    4.8343

t = Xw / Sw

t =    2.358
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The probability that the mean of A is greater than the mean of B is 0.9747
t-score = 2.358 with 7 degrees of freedom

Note:  You know more about populations than individuals:

B has a 19% chance of winning any given game (previous calculation)

B only has a 4.46% chance of winning a match

Also note that that you can calculate the sample size necessary to be 99% certain that the mean of A is larger than

the mean of B

From StatTrek, to be 99.5% certain, the means have to be 3.499 standard deviations apart (7 degrees of freedom).

The t-score is

t = 3.499 = 


xw

sw


 =









xa−xb

sa
2

na
+

s
b
2

nb









If we assume na = nb = n
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3.499 =





xa−xb

sa
2
+sb

2




 n = 1.054 n

n = 11.02

Round up to n = 12.  

This is a little conservative since if you have a sample size of 12, the degrees of freedom increase, which changes

the t-score needed.

Also note that as the sample size goes up, the t-score goes up as .  In theory, you can see minute differencesn

in the means if the sample size is large enough.
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