
Markov Chains

Previously, we solve problems such as:

Two teams, A and B, are playing a match: the fist team to win 2 games wins the match. If team A has a

70% chance of winning any given game, what is the probability that team A wins the match?

With this problem, the maximum number of games you play is finite: at most you'll play 5 games. A slightly

different problem is requiring that a team be up 3 games to win the match

Two teams, A and B, are playing a match: the fist team to win by 2 games wins the match. If team A has a

70% chance of winning any given game, what is the probability that team A wins the match?

This is a totally different problem. If team A wins then B wins, you're back were you started. Likewise, this

match could in theory go on to infinity.

To solve the latter problem, we need a different approach. Markov chains are one such approach.

A Markov chain is a discrete-time probability function where

X(k) is the state of the system at time k, and

X(k+1) = A X(k)

A classic problem with Markov chains is as follows:

A

B

C

0.5

0.2

0.3

0.3

0.6

0.1

0.4

0.6

Markov Chain: Three people toss a ball back and forth with probability of A tossing to B being defined.

Three people, A, B, and C, are playing ball. Every second they pass the ball at random:

When A has the ball, he/she
Keeps the ball 50% of the time

Passes it to B 20% of the time, and

Passes it to C 30% of the time

When B has the ball, he/she
Passes it to A 30% of the time

NDSU Markov Chains ECE 341

JSG 1 May 24, 2020

Keeps it 60% of the time, and

Passes it to C 10% of the time

When C has the ball, he/she
Passes it to A 40% of the time, and

Passes it to B 60% of the time.

Assume at t=0, A has the ball.

What is the probability that B will have the ball after k tosses?

After infinite tosses?

This lecture covers three different methods to analyze problems of this sort:

Matrix multiplication

Eigenvalues and Eigenvectors, and

z-Transforms.

Solution #1: Matrix Multiplication

Let X(k) be the probability that A, B, and C have the ball at time k:

x(k) =










p(a)

p(b)

p(c)










Then from the problem statement, X(k+1) is related to X(k) by a state-transition matrix:

x(k + 1) =










0.5 0.3 0.4

0.2 0.6 0.6

0.3 0.1 0









x(k) = A x(k)

Note that

The columns are the probabilities in the above problem statement, and

The columns must add up to 1.000 (all probabilities add to one)

Initially, A has the ball:

x(0) =










1

0

0










Starting with the initial condition, you can determine x(1), x(2), x(3), etc. simply by multiplying by the state

transition matrix:

NDSU Markov Chains ECE 341

JSG 2 May 24, 2020

The probability of each player having the ball after 1, 2, 3 tosses is (using Matlab)

A = [0.5,0.2,0.3 ; 0.3,0.6,0.1 ; 0.4,0.6,0]'

 0.5000 0.3000 0.4000
 0.2000 0.6000 0.6000
 0.3000 0.1000 0

X = [1;0;0] % k = 0

 1.0000
 0.0000
 0.0000

X = A*X % k = 1

 0.5000
 0.2000
 0.3000

X = A*X % k = 2

 0.4300
 0.4000
 0.1700

X = A*X % k = 3

 0.4030
 0.4280
 0.1690

time passes

X = A*X % k = 100

 0.3953
 0.4419
 0.1628

Eventually X quits changing. This is the steady-state solution.

If you want to find the steady-state solution, you can simply raise A to a large number (like 100) and solve in one

shot:

X0 = [1;0;0]

 1
 0
 0

X20 = A^100 * X0

 0.3953
 0.4419
 0.1628

NDSU Markov Chains ECE 341

JSG 3 May 24, 2020

You can also solve for the steady-state solution by finding x(k) such that

x(k + 1) = A x(k)

subject to

x(k + 1) = x(k)

Solving:

(A − I)x(k) = 0

















0.5 0.3 0.4

0.2 0.6 0.6

0.3 0.1 0









−










1 0 0

0 1 0

0 0 1


























a

b

c









= 0










−0.5 0.3 0.4

0.2 −0.4 0.6

0.3 0.1 −1



















a

b

c









= 0

Assume c = 1






−0.5 0.3

0.2 −0.4










a

b




 = −






0.4

0.6






ab = -inv([-0.5,0.3;0.2,-0.4])*[0.4;0.6]

 2.4286
 2.7143

So an (invalid) solution is

X = [ab;1]

 2.4286
 2.7143
 1.0000

This is invalid since the sum isn't 1.0000 (all probabilities add to one). Scaling to make the sum one:

X = X / sum(X)

 0.3953
 0.4419
 0.1628

which is the same answer we got before.

NDSU Markov Chains ECE 341

JSG 4 May 24, 2020

Solution #2: Eigenvalues and Eigenvectors

The problem we're trying to solve is

x(k + 1) = A x(k)

subject to

x(0) = X0

This is actually an eigenvalue / eigenvector problem.

Eigenvalues tell you how the system behaves,

Eigenvectors tell you what behaves that way.

Since this system has three states, the generalized solution for x(k) will be:

x(k) = a1Λ1λ1
k + a2Λ2λ2

k + a3Λ3λ3
k

where

 is the ith eigenvalue,λ i

 is the ith eigenvector, andΛ i

 is a constant depending upon the initial condition.a i

At k = 0:

x(0) =  Λ1 Λ2 Λ3 










a1

a2

a3










The excitation of each eigenvector is then

X0 = [1;0;0]

 1
 0
 0

A123 = inv(M)*X0

 0.6149
 0.5482
 0.9354

meaning

x(k) = 0.6149










0.6430

0.7186

0.2468









(1)k + 0.5482










0.2222

0.5693

−0.7915









(−0.1562)k + 0.9543










0.5151

−0.8060

0.2989









(0.2562)k

NDSU Markov Chains ECE 341

JSG 5 May 24, 2020

or adding the scalars to the eigenvectors:

W = inv(M)*X0

 0.6149
 0.5482
 0.9354

M * diag(W)

 0.3953 0.1218 0.4828
 0.4419 0.3121 -0.7539
 0.1628 -0.4339 0.2711

x(k) =










0.3953

0.4419

0.1628









(1)k +










0.1218

0.3121

−0.4339









(−0.1562)k +










0.4828

−0.7539

0.2711









(0.2562)k

As k goes to infinity, the first eigenvector is all that remains.

Note that the steady-state solution is simply the eigenvector associated with the eigenvalue of 1.000. If you are

interested in the steady-state solution, then this is the only thing you really care about.

In Matlab, determine the eigenvalues and eigenvectors:

A =

 0.5000 0.3000 0.4000
 0.2000 0.6000 0.6000
 0.3000 0.1000 0

[M,V] = eig(A)

M = eigenvectors

 0.6430 0.2222 0.5161

 0.7186 0.5693 -0.8060

 0.2648 -0.7915 0.2898

V = eigenvelues

 1.0000 0 0

 0 -0.1562 0

 0 0 0.2562

The eigenvector associated with the eigenvalue of 1.000 is the one we want (shown in blue). Scale this so that it

is a valid probability (i.e. the sum of its values is 1.000) and you have the steady-state solution.

NDSU Markov Chains ECE 341

JSG 6 May 24, 2020

X = M(:,1);
X = X / sum(X)

 0.3953
 0.4419
 0.1628

Solution #3: z-Transforms

Again, the problem we are trying to solve is

x(k + 1) =










0.5 0.3 0.4

0.2 0.6 0.6

0.3 0.1 0









x(k)

subject to

x(0) = X0 =










1

0

0










This can be written as

x(k) = A x(k − 1) + X0 δ(k)

or

x(k + 1) = A x(k) + X0 δ(k + 1)

Take the z-transform

zX = AX + zX0

To determine the probability that B has the ball at time k, look at the second state

Y = CX =  0 1 0 X

Solving for Y then gives the z-transform for b(k)

zX = AX + zX0

(zI − A)X = zX0

X = z(zI − A)−1
X0

NDSU Markov Chains ECE 341

JSG 7 May 24, 2020

Y = zCX = zC(zI − A)−1
X0

For our 3x3 example,

Y(z) = z  0 1 0 

















z 0 0

0 z 0

0 0 z









−










0.5 0.3 0.4

0.2 0.6 0.6

0.3 0.1 0

















−1









1

0

0










This is somewhat painful to compute by hand. Fortunately, there's Matlab to the rescue.

G = ss(A, B, C, D, T) input a dynamic system into matlab

Y = tf(G) calculate and express the z-transform of Y in transfer function form

Y = zpk(G) calculate and express the z-transform of Y in factored form

The matlab command ss allows you to input a discrete-time system of the form

zX = AX + BU

Y = CX + DU

with sampling rate T (T = 1 here). Putting this system in the same form

zX = AX + zX0

Y = CX

In matlab:

A = [0.5,0.3,0.4;0.2,0.6,0.6;0.3,0.1,0]

 0.5000 0.3000 0.4000
 0.2000 0.6000 0.6000
 0.3000 0.1000 0

X0 = [1;0;0]

 1
 0
 0
C = [0,1,0]

 0 1 0

Bz = ss(A, X0, C, 0, 1);

tf(Bz)

 0.2 z + 0.18

z^3 - 1.1 z^2 + 0.06 z + 0.04

NDSU Markov Chains ECE 341

JSG 8 May 24, 2020

Sampling time (seconds): 1

Multiply by z to get the B(z)

zpk(Bz)

 0.2 (z+0.9)

(z-1) (z-0.2562) (z+0.1562)

Sampling time (seconds): 1

Again, multily by z to get B(z). This means that the probability that B has the ball at time k is

B(z) = 


0.2z(z+0.9)

(z−1)(z−0.2562)(z−0.1562)



To find b(k), factor out a z and expand this using partial fractions:

B(z) = 




0.6054

z−1

 + 

−3.1089

z−0.2562

 + 

2.5034

z−0.1562



 z

This isn't in the table of z-transforms, so multiply both sides by z

B = 


0.6054z

z−1

 + 

−3.1089z

z−0.2562

 + 

2.5034z

z−0.1562



Take the inverse z-transform (i.e. use the table of z-transforms

b(k) = 
0.6054 − 3.1089(0.2562)k + 2.5034(0.1562)k 

 u(k)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5

k

b(k)

Probability that player B has the ball after toss k

NDSU Markov Chains ECE 341

JSG 9 May 24, 2020

z-Transform with Complex Poles

You can get complex poles. If you do, use entry in the z-transform table:




(a∠θ)z

z−b∠φ

 + 

(a∠−θ)z

z−b∠−φ

 → 2a bk cos (φk − θ) u(k)

For example, suppose player A, B, and C toss the ball as:

A keeps the ball 30% of the time and passes it to B 70% of the time

B keeps the ball 20% of the time and passes it to C 80% of the time, and

C keeps the ball 10% of the time and passes it to A 90% of the time

A

B

C

0.3

0.7

0.9

0.2

0.8

0.1

Ball tossing game with complex poles

Suppose A starts with the ball at k = 0. Determine the probability that B has the ball after k tosses.

Solving using z-transforms: express in matrix form

zX =










0.3 0 0.9

0.7 0.2 0

0 0.8 0.1









X X(0) =










1

0

0










Y = p(B) =  0 1 0 X

NDSU Markov Chains ECE 341

JSG 10 May 24, 2020

Find B(z) using Matlab

A = [0.3,0,0.9;0.7,0.2,0;0,0.8,0.1]

 0.3000 0 0.9000
 0.7000 0.2000 0
 0 0.8000 0.1000

X0 = [1;0;0];
C = [0,1,0];
Bz = ss(A,X0,C,0,1);
zpk(Bz)

 0.7 (z-0.1)

(z-1) (z^2 + 0.4z + 0.51)

Sampling time (seconds): 1

or (multiplying by z)

 B(z) =





0.7z(z−0.1)

(z−1)z−0.7142∠1060 


z−0.7142∠−1060 








Pull out a z and expand using partial fractions

B(z) =





0.3298

(z−1)

 +






0.2764∠−126.80


z−0.7142∠1060 






 +






0.2764∠126.80


z−0.7142∠−1060 










 z

Multiply both sides by z

B = 


0.3298z

(z−1)

 +






z0.2764∠−126.80


z−0.7142∠1060 






 +






z0.2764∠126.80


z−0.7142∠−1060 








Take the inverse z-transform

b(k) = 
0.3298 + 0.5527(0.7142)k

cos (k ⋅ 1060 + 126.80) u(k)

NDSU Markov Chains ECE 341

JSG 11 May 24, 2020

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

k

b(k)

probability that player B has the ball after k tosses

NDSU Markov Chains ECE 341

JSG 12 May 24, 2020

