
Markov Chains

Previously, we solve problems such as:

Two teams, A and B, are playing a match:  the fist team to win 2 games wins the match.  If team A has a

70% chance of winning any given game, what is the probability that team A wins the match?

With this problem, the maximum number of games you play is finite:  at most you'll play 5 games.  A slightly

different problem is requiring that a team be up 3 games to win the match

Two teams, A and B, are playing a match:  the fist team to win by 2 games wins the match.  If team A has a

70% chance of winning any given game, what is the probability that team A wins the match?

This is a totally different problem.  If team A wins then B wins, you're back were you started.  Likewise, this

match could in theory go on to infinity.

To solve the latter problem, we need a different approach.  Markov chains are one such approach.

A Markov chain is a discrete-time probability function where

X(k) is the state of the system at time k, and

X(k+1) = A X(k)

A classic problem with Markov chains is as follows:
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Markov Chain:  Three people toss a ball back and forth with probability of A tossing to B being defined.

Three people, A, B, and C, are playing ball.  Every second they pass the ball at random:

When A has the ball, he/she
Keeps the ball 50% of the time

Passes it to B 20% of the time, and

Passes it to C 30% of the time

When B has the ball, he/she
Passes it to A 30% of the time
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Keeps it 60% of the time, and

Passes it to C 10% of the time

When C has the ball, he/she
Passes it to A 40% of the time, and

Passes it to B 60% of the time.

Assume at t=0, A has the ball.

What is the probability that B will have the ball after k tosses?

After infinite tosses?

This lecture covers three different methods to analyze problems of this sort:

Matrix multiplication

Eigenvalues and Eigenvectors, and

z-Transforms.

Solution #1:  Matrix Multiplication

Let X(k) be the probability that A, B, and C have the ball at time k:

x(k) =










p(a)

p(b)

p(c)










Then from the problem statement, X(k+1) is related to X(k) by a state-transition matrix:

x(k + 1) =










0.5 0.3 0.4

0.2 0.6 0.6

0.3 0.1 0









x(k) = A x(k)

Note that 

The columns are the probabilities in the above problem statement, and

The columns must add up to 1.000  (all probabilities add to one)

Initially, A has the ball:

x(0) =










1

0

0










Starting with the initial condition, you can determine x(1), x(2), x(3), etc. simply by multiplying by the state

transition matrix:
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The probability of each player having the ball after 1, 2, 3 tosses is (using Matlab)

A = [0.5,0.2,0.3 ; 0.3,0.6,0.1 ; 0.4,0.6,0]'

    0.5000    0.3000    0.4000
    0.2000    0.6000    0.6000
    0.3000    0.1000         0

X = [1;0;0] % k = 0

    1.0000
    0.0000
    0.0000

X = A*X % k = 1

    0.5000
    0.2000
    0.3000

X = A*X % k = 2

    0.4300
    0.4000
    0.1700

X = A*X % k = 3

    0.4030
    0.4280
    0.1690

time passes

X = A*X % k = 100

    0.3953
    0.4419
    0.1628

Eventually X quits changing.  This is the steady-state solution.

If you want to find the steady-state solution, you can simply raise A to a large number (like 100) and solve in one

shot:

X0 = [1;0;0]

     1
     0
     0

X20 = A^100 * X0

    0.3953
    0.4419
    0.1628
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You can also solve for the steady-state solution by finding x(k) such that

x(k + 1) = A x(k)

subject to 

x(k + 1) = x(k)

Solving:

(A − I)x(k) = 0

















0.5 0.3 0.4

0.2 0.6 0.6

0.3 0.1 0









−










1 0 0

0 1 0

0 0 1


























a

b

c









= 0










−0.5 0.3 0.4

0.2 −0.4 0.6

0.3 0.1 −1



















a

b

c









= 0

Assume c = 1






−0.5 0.3

0.2 −0.4










a

b




 = −






0.4

0.6






ab = -inv([-0.5,0.3;0.2,-0.4])*[0.4;0.6]

    2.4286
    2.7143

So an (invalid) solution is

X = [ab;1]

    2.4286
    2.7143
    1.0000

This is invalid since the sum isn't 1.0000 (all probabilities add to one).  Scaling to make the sum one:

X = X / sum(X)

    0.3953
    0.4419
    0.1628

which is the same answer we got before.
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Solution #2:  Eigenvalues and Eigenvectors

The problem we're trying to solve is

x(k + 1) = A x(k)

subject to

x(0) = X0

This is actually an eigenvalue / eigenvector problem.

Eigenvalues tell you how the system behaves,

Eigenvectors tell you what behaves that way.

Since this system has three states, the generalized solution for x(k) will be:

x(k) = a1Λ1λ1
k + a2Λ2λ2

k + a3Λ3λ3
k

where

 is the ith eigenvalue,λ i

 is the ith eigenvector, andΛ i

  is a constant depending upon the initial condition.a i

At k = 0:

x(0) =  Λ1 Λ2 Λ3 










a1

a2

a3










The excitation of each eigenvector is then

X0 = [1;0;0]

     1
     0
     0

A123 = inv(M)*X0

    0.6149
    0.5482
    0.9354

meaning

x(k) = 0.6149










0.6430

0.7186

0.2468









(1)k + 0.5482










0.2222

0.5693

−0.7915









(−0.1562)k + 0.9543










0.5151

−0.8060

0.2989









(0.2562)k
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or adding the scalars to the eigenvectors:

W = inv(M)*X0

    0.6149
    0.5482
    0.9354

M * diag(W)

    0.3953    0.1218    0.4828
    0.4419    0.3121   -0.7539
    0.1628   -0.4339    0.2711

x(k) =










0.3953

0.4419

0.1628









(1)k +










0.1218

0.3121

−0.4339









(−0.1562)k +










0.4828

−0.7539

0.2711









(0.2562)k

As k goes to infinity, the first eigenvector is all that remains.

Note that the steady-state solution is simply the eigenvector associated with the eigenvalue of 1.000.  If you are

interested in the steady-state solution, then this is the only thing you really care about.

In Matlab, determine the eigenvalues and eigenvectors:

A =

    0.5000    0.3000    0.4000
    0.2000    0.6000    0.6000
    0.3000    0.1000         0

[M,V] = eig(A)

M =    eigenvectors

    0.6430    0.2222    0.5161

    0.7186    0.5693   -0.8060

    0.2648   -0.7915    0.2898

V =     eigenvelues

    1.0000         0         0

         0   -0.1562         0

         0         0    0.2562

The eigenvector associated with the eigenvalue of 1.000 is the one we want (shown in blue).  Scale this so that it

is a valid probability (i.e. the sum of its values is 1.000) and you have the steady-state solution.
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X = M(:,1);
X = X / sum(X)

    0.3953
    0.4419
    0.1628

Solution #3:  z-Transforms

Again, the problem we are trying to solve is

x(k + 1) =










0.5 0.3 0.4

0.2 0.6 0.6

0.3 0.1 0









x(k)

subject to

x(0) = X0 =










1

0

0










This can be written as

x(k) = A x(k − 1) + X0 δ(k)

or

x(k + 1) = A x(k) + X0 δ(k + 1)

Take the z-transform

zX = AX + zX0

To determine the probability that B has the ball at time k, look at the second state

Y = CX =  0 1 0 X

Solving for Y then gives the z-transform for b(k)

zX = AX + zX0

(zI − A)X = zX0

X = z(zI − A)−1
X0
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Y = zCX = zC(zI − A)−1
X0

For our 3x3 example,

Y(z) = z  0 1 0 

















z 0 0

0 z 0

0 0 z









−










0.5 0.3 0.4

0.2 0.6 0.6

0.3 0.1 0

















−1









1

0

0










This is somewhat painful to compute by hand.  Fortunately, there's Matlab to the rescue.

G = ss(A, B, C, D, T) input a dynamic system into matlab

Y = tf(G) calculate and express the z-transform of Y in transfer function form

Y = zpk(G) calculate and express the z-transform of Y in factored form

The matlab command ss allows you to input a discrete-time system of the form

zX = AX + BU

Y = CX + DU

with sampling rate T ( T = 1 here).  Putting this system in the same form

zX = AX + zX0

Y = CX

In matlab:

A = [0.5,0.3,0.4;0.2,0.6,0.6;0.3,0.1,0]

    0.5000    0.3000    0.4000
    0.2000    0.6000    0.6000
    0.3000    0.1000         0

X0 = [1;0;0]

     1
     0
     0
C = [0,1,0]

     0     1     0

Bz = ss(A, X0, C, 0, 1);

tf(Bz)

        0.2 z + 0.18
-----------------------------
z^3 - 1.1 z^2 + 0.06 z + 0.04
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Sampling time (seconds): 1

Multiply by z to get the B(z)

zpk(Bz)
 

        0.2 (z+0.9)
---------------------------
(z-1) (z-0.2562) (z+0.1562)
 
Sampling time (seconds): 1

Again, multily by z to get B(z).  This means that the probability that B has the ball at time k is

B(z) = 


0.2z(z+0.9)

(z−1)(z−0.2562)(z−0.1562)



To find b(k), factor out a z and expand this using partial fractions:

B(z) = 




0.6054

z−1

 + 

−3.1089

z−0.2562

 + 

2.5034

z−0.1562



 z

This isn't in the table of z-transforms, so multiply both sides by z

B = 


0.6054z

z−1

 + 

−3.1089z

z−0.2562

 + 

2.5034z

z−0.1562



Take the inverse z-transform (i.e. use the table of z-transforms

b(k) = 
0.6054 − 3.1089(0.2562)k + 2.5034(0.1562)k 

 u(k)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5

k

b(k)

Probability that player B has the ball after toss k
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z-Transform with Complex Poles

You can get complex poles.   If you do, use entry in the z-transform table:




(a∠θ)z

z−b∠φ

 + 

(a∠−θ)z

z−b∠−φ

 → 2a bk cos (φk − θ) u(k)

For example, suppose player A, B, and C toss the ball as:

A keeps the ball 30% of the time and passes it to B 70% of the time

B keeps the ball 20% of the time and passes it to C 80% of the time, and

C keeps the ball 10% of the time and passes it to A 90% of the time

A

B

C

0.3

0.7

0.9

0.2

0.8

0.1

Ball tossing game with complex poles

Suppose A starts with the ball at k = 0.  Determine the probability that B has the ball after k tosses.

Solving using z-transforms:  express in matrix form

zX =










0.3 0 0.9

0.7 0.2 0

0 0.8 0.1









X X(0) =










1

0

0










Y = p(B) =  0 1 0 X
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Find B(z) using Matlab

A = [0.3,0,0.9;0.7,0.2,0;0,0.8,0.1]

    0.3000         0    0.9000
    0.7000    0.2000         0
         0    0.8000    0.1000

X0 = [1;0;0];
C = [0,1,0];
Bz = ss(A,X0,C,0,1);
zpk(Bz)

       0.7 (z-0.1)
-------------------------
(z-1) (z^2 + 0.4z + 0.51)
 

Sampling time (seconds): 1

or (multiplying by z)

 B(z) =





0.7z(z−0.1)

(z−1)z−0.7142∠1060 


z−0.7142∠−1060 








Pull out a z and expand using partial fractions

B(z) =





0.3298

(z−1)

 +






0.2764∠−126.80


z−0.7142∠1060 






 +






0.2764∠126.80


z−0.7142∠−1060 










 z

Multiply both sides by z

B = 


0.3298z

(z−1)

 +






z0.2764∠−126.80


z−0.7142∠1060 






 +






z0.2764∠126.80


z−0.7142∠−1060 








Take the inverse z-transform

b(k) = 
0.3298 + 0.5527(0.7142)k

cos (k ⋅ 1060 + 126.80) u(k)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

k

b(k)

probability that player B has the ball after k tosses
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