
LaPlace Transforms

Table of LaPlace Transforms
Source:  CRC Handbook of Mathematical Tables, CRC Press, 1964

Common LaPlace Transforms

Name Time:  y(t)  (t >0) LaPlace: Y(s)

delta (impulse) δ(t) 1

unit step 1 


1
s



unit ramp t 


1

s2




unit parabola t2 


2

s3




tn 


n!

sn+1




decaying

exponential
e−bt 


1

s+b




t e−bt 


1

(s+b)2




t2 e−bt 


2

(s+b)3




tn e−bt 


(n−1)!

(s+b)n+1




2a ⋅ e−btcos(ct − θ)u(t) 


a∠θ

s+b+jc


 + 

a∠−θ

s+b−jc




Transfer Functions and Differential Equations:

LaPlace transforms assume all functions are in the form of

y(t) =





a ⋅ est t > 0

0 otherwise

This results in the derivative of y being:

dy

dt
= s ⋅ y(t)

This lets you convert differential equations into transfer funcitons and back.

Example 1:  Find the transfer function that corresponds to the following differential equation:

d3y

dt3
+ 6

d2y

dt2
+ 11

dy

dt
+ 6y = 8

dx

dt
+ 10x
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Solution:  Substitute 's' for 
d

dt

s3Y + 6s2Y + 11sY + 6Y = 8sX + 10X

Solve for Y

(s3 + 6s2 + 11s + 6)Y = (8s + 10)X

Y = 


8s+10

s3+6s2+11s+6


X

The transfer function from X to Y is

G(s) = 


8s+10

s3+6s2+11s+6




Note:  The transfer function is often called 'G(s)' since it is the gain from X to Y.

Example 2:  Given the transfer function G(s), 

G(s) = 


8s+10

s3+6s2+11s+6




determine the differential equation relating X and Y.

Solution:  Go backwards.  X and Y are related by:

Y = 


8s+10

s3+6s2+11s+6


X

Cross multiply:

(s3 + 6s2 + 11s + 6)Y = (8s + 10)X

Note that 'sY' means 'the derivative of Y'

d3y

dt3
+ 6

d2y

dt2
+ 11

dy

dt
+ 6y = 8

dx

dt
+ 10x

Sidelight: Fractional powers are not allowed in transfer functions. 

 means 'the second derivative of Y'.  s2Y

 means 'the 2.3th derivative of Y'. s2.3Y

I have no idea what a 0.3 derivative is.
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Solving Transfer Functions with Sinusoidal Inputs

Example 3:  Find y(t) given

Y = 


8s+10

s3+6s2+11s+6


X

and

x(t) = 3 cos(4t) + 5 sin(4t)

Solution:   This is actually a phasor problem.  From Euler's identity

e j4t = cos (4t) + j sin (4t)

Take the real part and you get cosine.  If you multiply by a complex number

(a + jb) e j4t = a cos (4t) − b sin (4t) + j(stuff)

Take the real part and you get the phasor representation of a sine wave

a + jb ↔ a cos(4t) − b sin(4t)

Going back to the original problem

G(s) is valid for all s

X(s) only exists at s = j4, so

Y = 


8s+10

s3+6s2+11s+6




s=j4

(3 − j5)

Y = (−0.181 − j0.315)(3 − j5)

Y = −2.120 − 0.040

This is the phasor representation for y(t)

y(t) = −2.120 cos(4t) + 0.040 sin(4t)
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Example 4:  Find y(t) if

x(t) = 6 cos(10t)

Same as before but s = j20 now:

Y = 


8s+10

s3+6s2+11s+6




s=j10

(6 + j0)

Y = (−0.067 − j0.034)(6 + j0)

Y = −0.404 − j0.202

which is the phasor representation for

y(t) = −0.404 cos(10t) + 0.202 sin(10t)

Example 5:  Find y(t) if

x(t) = 3 cos(4t) + 5 sin(4t) + 6 cos(10t)

Solution:  Treat this as two separate problems

x(t) = 3 cos(4t) + 5 sin(4t)

x(t) = 6 cos(10t)

The total input is the sum of the two x(t)'s.  The total output is the sum of the two y(t)'s

y(t) = −2.120 cos(4t) + 0.040 sin(4t)

−0.404 cos(10t) + 0.202 sin(10t)
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Solving Transfer Functions with Step Inputs

There are several ways to do this.  My preference is to use a table

Common LaPlace Transforms

Name Time:  y(t) LaPlace: Y(s)

delta (impulse) δ(t) 1

unit step u(t) 1
s

a ⋅ e−btu(t) a

s+b

2a ⋅ e−btcos(ct − θ)u(t) 


a∠θ

s+b+jc


 + 

a∠−θ

s+b−jc




Example:  Find the impulse response of

G(s) = 


5

s+3



Solution:  Translating:

Y = 


5

s+3

X

Y = 


5

s+3

 (1)

From the above table:

y(t) = 5e−3tu(t)

Example:  Find the step response of

G(s) = 


5

s+3



Solution:  Translating:

Y = 


5

s+3





1
s

 = 


5

s(s+3)



Here we have a problem:  the above table doesn't include this type of function.  Using partial fractions, however,

you can turn it into something that is in the table




5

s(s+3)

 = 


A
s

 + 

B

s+3



Near s = 0, both sides go to infinity.  The 'B' term is insignificant near s=0, so ignore it.  Then




5

s(s+3)



s→0

= 


A
s



s→0

Clearing out the 's' terms
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


5

s+3



s→0

= A

A = 5/3

When s approaches -3, both sides again go to infinity.  The 'A' term is finite and insignificant in this case,

meaning




5

s(s+3)



s→−3

= 


B

s+3



s→−3

Cancelling the (s+3) terms




5
s



s→−3

= B

B = −5/3

So,

Y = 


5

s(s+3)

 = 


5/3
s

 − 

5/3

s+3



Using the above table for each term:

y(t) = 


5

3
− 5

3
e−3t

 u(t)

Solving with Repeated Roots:  

Option #1:  Use partial fractions and an expanded table.

Exampe:  Find the inverse LaPlace tranform for

Y(s) = 


4

(s+2)2






1
s



This expands as

Y(s) = 


A
s

 + 

B

(s+2)2


 + 

C

s+2



Using the cover-up method

A = 




4

(s+2)2






1
−





s=0

= 1

B = 




4
−





1
s





s=−2

= −2

C = 


d

ds




4
s





s=−2

= 


−4

s2




s=−2

= −1

giving
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Y(s) = 


1
s

 + 

−2

(s+2)2


 + 

−1

s+2



Now use a table to find the inverse transform of each term

y(t) = (1 − 2t e−2t − e−2t)u(t)

Option #2:  Change the problem so that the roots are no longer repeated.  From a practical standpoint, there is

almost no difference between

Y(s) = 


4

(s+2)(s+2)





1
s



and

Y(s) = 


4

(s+2.01)(s+1.99)





1
s



In the latter case, the roots are no longer repeated.

Solving with Complex Roots:

If you don't mind comlpex numbers, complex roots are no different than real roots:  you just wind up with

complex numbers in the partial fraction expansion.

The relevant entry in the LaPlace Transform table is

 



a∠θ

s+b+jc


 + 

a∠−θ

s+b−jc


 ⇒ 2a ⋅ e−btcos(ct − θ)u(t)

Example:  Find the y(t) given that

Y(s) = G ⋅ U = 


15

s2+2s+10


 ⋅ 

1
s



Solution:   Factoring Y(s)

Y(s) = 


15

(s)(s+1+j3)(s+1−j3)



Using partial fraction expansion:

Y(s) = 


1.5
s

 + 

0.7906∠−161.560

s+1+j3

 + 

0.7906∠161.560

s+1−j3



        for t>0y(t) = 1.5 + 1.5812 ⋅ e−t ⋅ cos (3t + 161.560)
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Properties of LaPlace Transforms

Properties of LaPlace Transforms

Let's start with some properties of LaPlace transforms:

Linearity:    af(t) + bg(t) ⇔ aF(s) + bG(s)

Convolution:f(t) ∗ ∗g(t) ⇔ F(s) ⋅ G(s)

Differentiation: 
dy

dt
⇔ sY − y(0)

d2y

dt2
⇔ s2Y − sy(0) −

dy(0)

dt

Integration: ∫0

t

x(τ)dτ = 1
s X(s)

Delay x(t − T) ⇔ e−sTX(s)

Proofs:

Linearity:

L(af(t) + bg(t)) = ∫−∞

∞

(af(t) + bg(t)) ⋅ e−st ⋅ dt

= ∫−∞

∞

(af(t)) ⋅ e−st ⋅ dt + ∫−∞

∞

(bg(t)) ⋅ e−st ⋅ dt

= a ∫−∞

∞
f(t) ⋅ e−st ⋅ dt + b ∫−∞

∞
g(t) ⋅ e−st ⋅ dt

= aF(s) + bG(s)

Convolution:

f(t) ∗ ∗g(t) = ∫−∞

∞
f(t − τ) ⋅ g(τ) ⋅ dτ

L(f(t) ∗ ∗g(t)) = ∫−∞

∞ 
∫−∞

∞
f(t − τ) ⋅ g(τ) ⋅ dτ ⋅ e−st ⋅ dt

= ∫−∞

∞ 
∫−∞

∞
f(t − τ) ⋅ g(τ) ⋅ e−st ⋅ dt ⋅ dτ
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= 
∫−∞

∞
f(t − τ) ⋅ e−st ⋅ dt ⋅ ∫−∞

∞
g(t) ⋅ e−st ⋅ dt

= F(s) ⋅ G(s)

Differentiation:

L
dx

dt


 = ∫−∞

∞ 


dx(t)

dt


 ⋅ e−st ⋅ dt

Assume causal (zero for t<0)

L
dx

dt


 = ∫0

∞ 


dx(t)

dt


 ⋅ e−st ⋅ dt

Integrate by parts.  

(ab) = a ⋅ b + a ⋅ b

∫ a ⋅ b ⋅ dt = ab − ∫ a ⋅ b ⋅ dt

Let

a = dx

dt

a = x

b = e−st

then

L
dx

dt


 = ∫0

∞ 


dx(t)

dt


 ⋅ e−st ⋅ dt

= (x ⋅ e−st)0

∞
− ∫−∞

∞
−s ⋅ x(t) ⋅ e−st ⋅ dt

= −x(0) + s ∫−∞

∞
x(t) ⋅ e−st ⋅ dt

= sX − x(0)
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Integration:

L∫0

t

x(τ) ⋅ dτ = ∫−∞

∞ 
∫0

t

x(τ) ⋅ dτ ⋅ e−st ⋅ dt

Integrate by parts.

∫ a ⋅ b ⋅ dt = ab − ∫ a ⋅ b ⋅ dt

Let

a = ∫0

t

x(τ) ⋅ dτ

b = e−st

then

a = x

b = −1
s e−st

L∫0

t

x(τ) ⋅ dτ = ∫−∞

∞ 
∫0

t

x(τ) ⋅ dτ ⋅ e−st ⋅ dt

= 
∫0

t

x(τ) ⋅ dτ ⋅ −1
s e−st


−∞

∞

− ∫−∞

∞
x ⋅ −1

s e−st ⋅ dt

Assuming the function vanishes at infinity

= 1
s ∫−∞

∞
x ⋅ dt

= 


1
s

X(s)

Time Delay

L(x(t − T)) = ∫−∞

∞
x(t − T) ⋅ e−st ⋅ dt

Do a change of variable

t − T = τ

L(x(t − T)) = ∫−∞

∞
x(τ) ⋅ e−s(τ+T) ⋅ dτ

= ∫−∞

∞
x(τ) ⋅ e−sτ ⋅ e−sT ⋅ dτ

= e−sT ⋅ ∫−∞

∞
x(τ) ⋅ e−sτ ⋅ dτ

= e−sT ⋅ X(s)
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Summary

When dealing with discrete probability funcitons or difference equations, z-transforms are useful.  z-Transforms

turn such equations into algebraic equations in z and turn convolution into multiplication.

When dealing with continuous probability functions of differential equations, LaPlace transforms are useful.

LaPlace transforms turn such equations into algebraic equations in s and turn convolution into multiplication.

LaPlace transforms also allow you to go from the pdf to the cdf fairly easily:

cdf = 


1
s

 ⋅ pdf
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