ECE 341 - Test #3: Name

Markov Chains and Data Analysis

1) Markov Chains: Assume five players are tossing a ball around.

- Each second the player with the ball tosses it.
- The probability that the player tosss the ball to someone else is shown below.
- At k=0, player A has the ball.

a) Express the probability that a player has the ball after k tosses as:

$$X(k+1) = MX(k)$$

where X(k) is the probability that player {A, B, C, D, E} has the ball at toss #k.

- b) Determine the probability that A has the ball after 10 tosses.
 - or explain how you would find this if you don't have access to Matlab

2) t-Test (One data set). A 4-sided die may or may not be loaded. If it's a fair die, the mean of the die rolls should be 2.5.

- Use a t-test to determine the probability that the mean of the die is in the range of (2.4, 2.6)
- (i.e. is this a fair die?)
- note: This is population question

1's	2's	3's	4's	mean	st dev	# rolls		
29	20	31	20	2.4200	1.1117	100		
$p(2.4 < \mu < 2.6) = ?$								

3) t-Test (Two data sets): Two four-sided dice are rolled N times. They might be fair dice, they might both be loaded dice.

Determine the probability that the mean of die A is within 0.1 of the mean of B

- i.e. $-0.1 < \mu_a \mu_b < 0.1$
- note: this is a population question

	1's	2's	3's	4's	mean	st dev	# rolls		
A	29	20	31	20	2.4200	1.1117	100		
В	14	23	22	21	2.6250	1.0599	80		
	$p(-0.1 < \mu_a - \mu_b < +0.1) = ?$								

4) Chi-Squared Test: A 4-sided die is rolled 100 times. Determine if this is a fair die using a chi-squared test

1's	2's	3's	4's	mean	st dev	# rolls
29	20	31	20	2.4200	1.1117	100

5) ANOVA (Three data sets): Three 4-sided dice are rolled. They may or may not be loaded.

	1's	2's	3's	4's	mean	st dev	# rolls
A	29	20	31	20	2.4200	1.1117	100
В	14	23	22	21	2.6250	1.0599	80
С	20	12	14	14	2.3667	1.1784	60

Use an ANOVA test to determine if the three dice have the same mean