ECE 341 - Test #3: Name

Markov Chains and Data Analysis

1) Markov Chains: Assume five players are tossing a ball around.

- Each second the player with the ball tosses it.
- The probability that the player tosss the ball to someone else is shown below.
- At k=0, player A has the ball.

a) Express the probability that a player has the ball after k tosses as:

$$X(k+1) = MX(k)$$

where X(k) is the probability that player {A, B, C, D, E} has the ball at toss #k.

A(k+1)		0 0.8 0.7 0.6	0.9	$\int A(k)$
B(k + 1)		0.1 0 0 0	0.1	B(k)
C(k+1)	=	0.2 0.2 0 0	0	C(k)
D(k+1)		0.3 0 0.3 0	0	D(k)
E(k+1)		0.4 0 0 0.4	0	E(k)

Note:

• Columns add to one (the ball goes somewhere)

b) Determine the probability that A has the ball after 10 tosses.

$$X(10) = M^{10}X(0)$$

Assume A starts with the ball

$$X(10) = \begin{bmatrix} 0 & 0.8 & 0.7 & 0.6 & 0.9 \\ 0.1 & 0 & 0 & 0 & 0.1 \\ 0.2 & 0.2 & 0 & 0 & 0 \\ 0.3 & 0 & 0.3 & 0 & 0 \\ 0.4 & 0 & 0 & 0.4 & 0 \end{bmatrix}^{10} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

In Matlab

```
>> M = [0,0.8,0.7,0.6,0.9; 0.1,0,0,0,0.1; 0.2,0.2,0,0,0; 0.3,0,0.3,0,0;
0.4,0,0,0.4,0]
              0.8000
                         0.7000
                                    0.6000
                                              0.9000
        0
    0.1000
                                              0.1000
                   0
                              0
                                         0
    0.2000
              0.2000
                              0
                                         0
                                                   0
    0.3000
                   0
                         0.3000
                                         0
                                                   0
    0.4000
                                    0.4000
                                                   0
                    0
                              0
>> X0 = [1, 0, 0, 0, 0]
     1
     0
     0
     0
     0
>> M^10 * X0
     0.4676
a
     0.0644
b
     0.0922
С
     0.1503
d
     0.2255
е
```

There is a 46.76% chance A has the ball after 10 tosses

2) t-Test (One data set). A 4-sided die may or may not be loaded. If it's a fair die, the mean of the die rolls should be 2.5.

- Use a t-test to determine the probability that the mean of the die is in the range of (2.4, 2.6)
- (i.e. is this a fair die?)
- note: This is population question

2's	3's	4's	mean	st dev	# rolls				
20	31	20	2.4200	1.1117	100				
$p(2.4 \le 11 \le 2.6) = 51.7\%$									
$p(2.7 < \mu < 2.0) = 51.770$									
	2's 20 p(2.4 < μ <	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2's3's4'smean2031202.4200 $p(2.4 < \mu < 2.6) = 51.7\%$	2's 3's 4's mean st dev 20 31 20 2.4200 1.1117 $p(2.4 < \mu < 2.6) = 51.7\%$				

Solution: Find the t-score and the probability at 2.4 and 2.6. It sometimes helps to draw the pdf:

To find the area between (2.4, 2.6),

- Find the area of the tail, left of 2.4
- Find the area of the tail, right of 2.6
- The remaining area is the probability that the mean is in the range of (2.4, 2.6)

Since this is a population question, divide the variance by n

Area left of 2.4:

$$t = \left(\frac{2.4 - \bar{x}}{s/\sqrt{n}}\right)$$
$$t = \left(\frac{2.4 - 2.42}{\frac{1.1117}{\sqrt{100}}}\right) = -0.1799$$

From a t-table with 99 degrees of freedom, the area to the left is 0.429

Area right of 2.6:

$$t = \left(\frac{2.6 - 2.42}{\frac{1.1117}{\sqrt{100}}}\right) = 1.6191$$

From a t-table with 99 degrees of freedom, the area of the tail is 0.054

The area in the middle is then

p = 1 - 0.054 - 0.429 = 0.517

There is a 51.7% chance the population's mean in in the range of (2.4, 2.6)

3) **t-Test (Two data sets):** Two four-sided dice are rolled N times. They might be fair dice, they might both be loaded dice.

Determine the probability that the mean of die A is within 0.1 of the mean of B

- i.e. $-0.1 < \mu_a \mu_b < 0.1$
- note: this is a population question

	1's	2's	3's	4's	mean	st dev	# rolls	
A	29	20	31	20	2.4200	1.1117	100	
В	14	23	22	21	2.6250	1.0599	80	
$p(-0.1 < \mu_a - \mu_b < +0.1) = 22.8\%$								

Define a new variable, W, which is the difference between A and B. Since this is a population question, divide the variance by the sample size:

W = A - B

$$\bar{x}_w = \bar{x}_a - \bar{x}_b = -0.205$$

 $s_w = \sqrt{\frac{s_a^2}{100} + \frac{s_b^2}{80}} = 0.162484$

It helps to draw the pdf. The are between (-0.1, +0.1) is one minus

- The area of the tail left of -0.1, minus
- The area of the tail right of +0.1

Find the t-score at -0.1

$$t = \left(\frac{-0.1 - (-0.205)}{0.162484}\right) = 0.646217$$

The area to the left is 0.7400 (80 degrees of freedom)

Find the t-score at +0.1

$$t = \left(\frac{+0.1 - (-0.205)}{0.162484}\right) = 1.877105$$

The area to the right is 0.032

The area in the middle is the remainder:

p = 1.000 - 0.032 - 0.740 = 0.228

There is a 22.8% chance the mean of A and B are within 0.1 of eachother

4) Chi-Squared Test: A 4-sided die is rolled 100 times. Determine if this is a fair die using a chi-squared test

1's	2's	3's	4's	mean	st dev	# rolls
29	20	31	20	2.4200	1.1117	100

die roll	р	np	Ν	chi-squared
1	0.25	25	29	0.64
2	0.25	25	20	1
3	2.5	25	31	1.44
4	0.25	25	20	1
			Total	4.08

From StatTrek, with three degrees of freedom, this corresponds to a probability of 0.74705

There is a 74.705% chance the die is not fair

5) ANOVA (Three data sets): Three 4-sided dice are rolled. They may or may not be loaded.

	1's	2's	3's	4's	mean	st dev	# rolls
A	29	20	31	20	2.4200	1.1117	100
В	14	23	22	21	2.6250	1.0599	80
С	20	12	14	14	2.3667	1.1784	60

Use an ANOVA test to determine if the three dice have the same mean

In Matlab

Xa = 2.420;Sa = 1.1117;Xb = 2.6250;Sb = 1.0599; Xc = 2.3667;Sc = 1.1784;Na = 100;Nb = 80;Nc = 60;k = 3; N = Na + Nb + NcG = (Na*Xa + Nb*Xb + Nc*Xc) / N $MSSb = (Na*(Xa-G)^{2} + Nb*(Xb-G)^{2} + Nc*(Xc-G)^{2}) / (k-1)$ $MSSw = ((Na-1)*Sa^{2} + (Nb-1)*Sb^{2} + (Nc-1)*Sc^{2}) / (N-k)$ F = MSSb / MSSw = 240 Ν = 2.4750 G MSSb = 1.4031 MSSw = 1.2364F = 1.1348

From StatTrek, this corresponds to a probability of 66.7%

- F = 1.1348
- numberator has 2 (k-1) degrees of freedom
- denominator has 237 (N-k) degrees of freedom
- p = 0.677

There is a 66.7% chance that the populations have different means (one or more die is loaded)