ECE 341-Test \#2

Continuous Probability - Summer 2024

1) Continuous PDF

A 5% tolerance rersistor often has a pdf as shown below (resistors which are within 2% of rated value are removed and sold as 2% or 1% resistors).

a) Determine a scalar so that this is a valid pdf (i.e. the total area $=1.0000$)

The area is 6

$$
\mathrm{k}=1 / 6
$$

b) Determine the moment generating function (i.e. LaPlace transform)

Differentiate to get delta functions. Once you have delta functions, the LaPlace transform is easy:

$$
6 x^{\prime}(s)=e^{5 s}-e^{2 s}+e^{-2 s}-e^{-5 s}
$$

Integrate to get back to the pdf

$$
X(s)=\left(\frac{1}{6 s}\right)\left(e^{5 s}-e^{2 s}+e^{-2 s}-e^{-5 s}\right)
$$

2) Uniform Distribuitions

Let A, B, and C be continuous uniform distributions

- $\mathrm{A}=$ uniform over the interval of $(3,7)$
- $\quad B=$ uniform over the interval of $(1,2)$,
- $\mathrm{X}=\mathrm{A}+\mathrm{B}$

Use moment generating functions to determine the pdf for X (i.e. LaPlace Transforms)

$$
\begin{aligned}
& A(s)=\left(\frac{1}{4 s}\right)\left(e^{-3 s}-e^{-7 s}\right) \\
& B(s)=\left(\frac{1}{s}\right)\left(e^{-s}-e^{-2 s}\right) \\
& X(s)=A(s) \cdot B(s) \\
& X(s)=\left(\frac{1}{4 s}\right)\left(e^{-3 s}-e^{-7 s}\right) \cdot\left(\frac{1}{s}\right)\left(e^{-s}-e^{-2 s}\right)
\end{aligned}
$$

Multiply out

$$
X(s)=\left(\frac{1}{4 s^{2}}\right)\left(e^{-4 s}-e^{-5 s}-e^{-8 s}+e^{-9 s}\right)
$$

Take the inverse LaPlace transform

$$
x(k)=\left(\frac{1}{4}\right)((t-4) u(t-4)-(t-5) u(t-5)-(t-8) u(t-8)+(t-9) u(t-9))
$$

3) Gamma CDF

Let A, B be continuous exponential distributions:

- A has a mean of 2 seconds

$$
\begin{array}{ll}
a(t)=\frac{1}{2} e^{-t / 2} u(t) & A(s)=\left(\frac{1 / 2}{s+1 / 2}\right) \\
b(t)=\frac{1}{5} e^{-t / 5} u(t) & B(s)=\left(\frac{1 / 5}{s+1 / 5}\right)
\end{array}
$$

- B has a mean of 5 seconds

The moment generating function for the cdf of $\mathrm{Y}=$ two A 's and one B happens is

$$
Y(s)=\left(\frac{1}{s}\right)\left(\frac{1 / 2}{s+1 / 2}\right)^{2}\left(\frac{1 / 5}{s+1 / 5}\right)
$$

Determine the equation for the cdf (i.e. take the inverse LaPlace transform)
Do a partial fraction expansion

$$
Y(s)=\left(\frac{a}{s}\right)+\left(\frac{b}{(s+1 / 2)^{2}}\right)+\left(\frac{c}{s+1 / 2}\right)+\left(\frac{d}{s+1 / 5}\right)
$$

$\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$ can be found using the cover-up method

$$
\begin{aligned}
& a=\left(\left(\frac{1 / 2}{s+1 / 2}\right)^{2}\left(\frac{1 / 5}{s+1 / 5}\right)\right)_{s=0}=1 \\
& b=\left(\left(\frac{1}{s}\right)\left(\frac{1 / 5}{s+1 / 5}\right)\right)_{s=-1 / 2}=\frac{1}{3} \\
& d=\left(\left(\frac{1}{s}\right)\left(\frac{1 / 2}{s+1 / 2}\right)^{2}\right)_{s=-1 / 5}=2 \frac{7}{9}
\end{aligned}
$$

Find c by placing all terms over a common denominator. The numerator is then...

$$
\frac{1}{20}=a\left(s+\frac{1}{2}\right)^{2}\left(s+\frac{1}{5}\right)+b(s)\left(s+\frac{1}{5}\right)+c(s)\left(s+\frac{1}{2}\right)\left(s+\frac{1}{5}\right)+d(s)\left(s+\frac{1}{2}\right)^{2}
$$

Matching the s3 terms

$$
\begin{aligned}
& 0=a+c+d \\
& c=1 \frac{7}{9}
\end{aligned}
$$

So

$$
Y(s)=\left(\frac{1}{s}\right)+\left(\frac{1 / 3}{(s+1 / 2)^{2}}\right)+\left(\frac{1.7778}{s+1 / 2}\right)+\left(\frac{-2.7778}{s+1 / 5}\right)
$$

and

$$
y(t)=\left(1+0.333 t e^{-t / 2}+1.7778 e^{-t / 2}-2.7778 e^{-t / 5}\right) u(t)
$$

4) Central Limit Theorem

The Dungeons and Dragons spell Meteor Swarm does 20-120 damage (the sum of twenty 6-sided dice)

$$
y=20 \mathrm{~d} 6
$$

Use a normal approximation to determine the probability that the total damage is more than 99.5

die	d 4	d 6	d 8	d 10	d 12
mean	2.5000	3.5000	4.5000	5.5000	6.5000
variance	1.2500	2.9167	5.2500	8.2500	11.9167

mean of y	standard deviation of y	z -score for sum $=99.5$	p (sum >99.5)
70	$\mathbf{7 . 6 3 8 8}$	3.8619	$\mathbf{0 . 0 0 0} \mathbf{0 5 6} \mathbf{1 3}$
			56 in one million

Mean: Scales with the number of dice

$$
\begin{aligned}
& \mu_{y}=20 \cdot \mu_{d 6} \\
& \mu_{y}=20 \cdot 3.5=70
\end{aligned}
$$

Standard Deviation: The variance scales with the number of dice

$$
\begin{aligned}
& \sigma_{y}^{2}=20 \cdot \sigma_{d 6}^{2} \\
& \sigma_{y}^{2}=20 \cdot 2.9176=58.3520 \\
& \sigma_{y}=\sqrt{58.352}=7.6388
\end{aligned}
$$

z-Score: The distance of 99.5 from the mean

$$
z=\left(\frac{99.5-70}{7.6388}\right)=3.8619
$$

From a standard normal table, this z-score corresponds to a probability of 0.0005613

5) Testing with Normal pdf

Two wizards in Dungeons and Dragons cast spells. Let

- A be the damage done by a Flame Strike spell (the sum of eight 6-sided dice: 8d6)
- B be the damage done by a Firestorm spell (sum of seven 10 -sided dice: 7d10)

die	d 4	d 6	d 8	d 10	d 12
mean	2.5000	3.5000	4.5000	5.5000	6.5000
variance	1.2500	2.9167	5.2500	8.2500	11.9167

Use a normal approximation to determine the probability that $\mathrm{A}>\mathrm{B}$

	$\mathrm{A}=8 \mathrm{~d} 6$	$\mathrm{~B}=7 \mathrm{~d} 10$	$\mathrm{~W}=\mathrm{A}-\mathrm{B}$
mean	28	38.5	-10.5
variance	23.3333	57.75	81.08
z -Score	1.1666		
$\mathrm{p}(\mathrm{A}>\mathrm{B})$	0.12302		

Mean:

$$
\begin{aligned}
& \mu_{a}=8 \cdot \mu_{d 6}=28 \\
& \mu_{b}=7 \cdot \mu_{d 10}=38.5 \\
& \mu_{w}=\mu_{a}-\mu_{b}=-10.5
\end{aligned}
$$

Variance

$$
\begin{aligned}
& \boldsymbol{\sigma}_{a}^{2}=8 \cdot \boldsymbol{\sigma}_{d 6}^{2}=23.333 \\
& \boldsymbol{\sigma}_{b}^{2}=7 \cdot \boldsymbol{\sigma}_{d 10}^{2}=57.75 \\
& \boldsymbol{\sigma}_{w}^{2}=\boldsymbol{\sigma}_{a}^{2}+\boldsymbol{\sigma}_{b}^{2}=81.08 \\
& \boldsymbol{\sigma}_{w}=\sqrt{81.08}
\end{aligned}
$$

z-score

$$
\begin{aligned}
& z=\left(\frac{\mu_{w}-0}{\sigma_{w}}\right) \\
& z=\left(\frac{-10.5}{9.0044}\right)=1.1661
\end{aligned}
$$

Use a standard normal table to convert this z -score to an area

$$
\text { area of tail }=0.12302
$$

