ECE 341 - Test \#1

Combinations, Permitations, and Discrete Probability - Summer 2024
Open-Book, Open Notes. Calculators \& Tarot cards allowed. Chegg or other people not allowed.

1) Permutations \& Combinations in Bison Poker

Assume a 65 -card deck of playing cards

- 13 card values (ace .. king)
- Five suits (clubs, diamonds, hearts, spades, bison)

Each player is dealt six cards. The best 5 -card hand makes up your band in Bison poker.
Calculate the odds of being dealt three of a kind:

- best five cards include a 3-of-a-kind
- hand $=\{x \times x a b c\}$,
- $\{\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ all have different values, suit doesn't matter.

2) Conditional Probability

Assume you play the following game:

- Flip a coin. (heads or tails)
- If the coin is a heads, then roll two 6 -sided dice
- If the coin is a tails, then roll two 8 -sided dice Your score is the sum of the die rolls.

Determine the probability that the sum of the dice is three.

3. Binomial Distribution

Let X be the number of 1 's you get when rolling fourty 4 -sided dice.

- die roll $=\{1\} \quad 1$ point
- die roll $=\{2,3,4\} \quad 0$ points

Determine the probability that $\mathrm{X}=\mathrm{m}$ where m is your birth date (1..31)

m birth date (1.31)	probability $\mathrm{X}=\mathrm{m}$ with fourty die rolls

4. Convolution

Use convolution by hand (i.e. not with Matlab or similar programs) to determine the product of two polynomials:

$$
y(x)=\left(5 x^{2}+3 x+7\right)(2 x+3)
$$

Note: Show your work to get full credit
a) x^{0} term (determine using convolution)
b) x^{1} term (determine using convolution)
c) x^{2} term (determine using convolution)
d) x^{3} term (determine using convolution)

5. Geometric \& z-Transforms

Let

- X be the number of rolls of an 10 -sided die until you get a number from $1 . .3\{1,2,3\}$:

$$
X=\left(\frac{0.3}{z-0.7}\right)
$$

- Y be the number of rolls a 10 -sided die until you get a number from 1..4: $\{1,2,3,4\}$:

$$
Y=\left(\frac{0.4}{z-0.6}\right)
$$

Determine the pdf for $\mathrm{W}=\mathrm{X}+\mathrm{Y}$ using z -transforms

