ECE 341 - Test \#1

Combinations, Permitations, and Discrete Probability - Summer 2024
Open-Book, Open Notes. Calculators \& Tarot cards allowed. Chegg or other people not allowed.

1) Permutations \& Combinations in Bison Poker

Assume a 65 -card deck of playing cards

- 13 card values (ace .. king)
- Five suits (clubs, diamonds, hearts, spades, bison)

Each player is dealt six cards. The best 5 -card hand makes up your band in Bison poker.
Calculate the odds of being dealt three of a kind:

- best five cards include a 3-of-a-kind
- hand $=\{x \times x a b c\}$,
- $\{\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ all have different values, suit doesn't matter.
$\mathrm{M}=(13 \mathrm{c} 11$ for x$)\left(5 \mathrm{c} 3\right.$ for three $\left.\mathrm{x}^{\prime} \mathrm{s}\right)(12 \mathrm{c} 3$ for abc$)(5 \mathrm{c} 1$ for a$)(5 \mathrm{c} 1$ for b$)(5 \mathrm{c} 1$ for c$)$

$$
M=\binom{13}{1}\binom{5}{3}\binom{12}{3}\binom{5}{1}\binom{5}{1}\binom{5}{1}
$$

$$
M=3,575,000
$$

The number of 6-card hands:

$$
N=\binom{65}{6}=82,598,880
$$

The odds of being dealt a three of a kind:

$$
p=\frac{M}{N}=0.043281
$$

2) Conditional Probability

Assume you play the following game:

- Flip a coin. (heads or tails)
- If the coin is a heads, then roll two 6 -sided dice
- If the coin is a tails, then roll two 8 -sided dice Your score is the sum of the die rolls.

Determine the probability that the sum of the dice is three.

Case 1: You flip a heads

$$
\begin{aligned}
& p(B)=0.5 \\
& \left.p(A \mid B)=\left(\frac{2}{36}\right) \quad \text { (two ways to get a three: } 1+2 \text { and } 2+1\right) \\
& p(A)=p(A \mid B) p(B)=\frac{1}{36}
\end{aligned}
$$

Case 2: You flip a tails

$$
p(B)=0.5
$$

$$
p(A \mid B)=\left(\frac{2}{64}\right) \quad \text { (two ways to get a three: } 1+2 \text { and } 2+1 \text {) }
$$

$$
p(A)=p(A \mid B) p(B)=\frac{1}{64}
$$

The total odds are the sum of the two

$$
p(3)=\frac{1}{36}+\frac{1}{64}=0.043403
$$

3. Binomial Distribution

Let X be the number of 1 's you get when rolling fourty 4 -sided dice.

- die roll $=\{1\}$

1 point

- die roll $=\{2,3,4\} \quad 0$ points

Determine the probability that $\mathrm{X}=\mathrm{m}$ where m is your birth date (1..31)

m birth date (1.31)	probability $\mathrm{X}=\mathrm{m}$ with fourty die rolls
15	

This is a binomial distribution

$$
\begin{array}{lc}
\\
p(x)=\binom{40}{x}\left(\frac{1}{4}\right)^{x}\left(\frac{3}{4}\right)^{40-x} \\
x & p(x) \\
1 & 0.0001 \\
2 & 0.0009 \\
3 & 0.0037 \\
4 & 0.0113 \\
5 & 0.0272 \\
6 & 0.0530 \\
7 & 0.0857 \\
8 & 0.1179 \\
9 & 0.1397 \\
10 & 0.1444 \\
11 & 0.1312 \\
12 & 0.1057 \\
13 & 0.0759 \\
14 & 0.0488 \\
15 & 0.0282 \\
16 & 0.0147 \\
17 & 0.0069 \\
18 & 0.0029 \\
19 & 0.0011 \\
20 & 0.0004 \\
21 & 0.0001 \\
22 & 0.0000 \\
23 & 0.0000 \\
24 & 0.0000 \\
25 & 0.0000 \\
26 & 0.0000 \\
27 & 0.0000 \\
28 & 0.0000 \\
29 & 0.0000 \\
30 & 0.0000 \\
31 & 0.0000
\end{array}
$$

4. Convolution

Use convolution by hand (i.e. not with Matlab or similar programs) to determine the product of two polynomials:

$$
y(x)=\left(5 x^{2}+3 x+7\right)(2 x+3)=a(x) * * b(x)
$$

Note: Show your work to get full credit
ans: $\quad y(x)=21+23 x+21 x^{2}+10 x^{3}$
a) x^{0} term (determine using convolution) $=\mathbf{2 1}$

-3	-2	-1	0	1	2	3	4	5
$\mathrm{a}(\mathrm{x})$	-	-	7	3	5	-	-	-
$\mathrm{b}(\mathrm{k}-\mathrm{x})$	-	2	3	-	-	-	-	-
product			21					

b) x^{1} term $($ determine using convolution $)=\mathbf{2 3}$

-3	-2	-1	0	1	2	3	4	5
$\mathrm{a}(\mathrm{x})$	-	-	7	3	5	-	-	-
$\mathrm{b}(\mathrm{k}-\mathrm{x})$	-	-	2	3	-	-	-	-
product			14	9				

c) x^{2} term $($ determine using convolution $)=\mathbf{2 1}$

-3	-2	-1	0	1	2	3	4	5
$\mathrm{a}(\mathrm{x})$	-	-	7	3	5	-	-	-
$\mathrm{b}(\mathrm{k}-\mathrm{x})$	-	-	-	2	3	-	-	-
product				6	15			

d) x^{3} term $($ determine using convolution $)=\mathbf{1 0}$

-3	-2	-1	0	1	2	3	4	5
$\mathrm{a}(\mathrm{x})$	-	-	7	3	5	-	-	-
$\mathrm{b}(\mathrm{k}-\mathrm{x})$	-	-	-	-	2	3	-	-
product					10			

5. Geometric \& z-Transforms

Let

- X be the number of rolls of an 10 -sided die until you get a number from $1 . .3\{1,2,3\}$:

$$
X=\left(\frac{0.3}{z-0.7}\right)
$$

- Y be the number of rolls a 10 -sided die until you get a number from 1..4: $\{1,2,3,4\}$:

$$
Y=\left(\frac{0.4}{z-0.6}\right)
$$

Determine the pdf for $\mathrm{W}=\mathrm{X}+\mathrm{Y}$ using z -transforms

$$
\begin{aligned}
& W=X Y \\
& W=\left(\frac{0.3}{z-0.7}\right)\left(\frac{0.4}{z-0.6}\right)
\end{aligned}
$$

do partial fractions

$$
W=\left(\frac{1.2}{z-0.7}\right)+\left(\frac{-1.2}{z-0.6}\right)
$$

Multiply by z and take the inverse z -transform

$$
\begin{aligned}
& z W=\left(\frac{1.2 z}{z-0.7}\right)+\left(\frac{-1.2 z}{z-0.6}\right) \\
& z w(k)=\left(1.2(0.7)^{k}-1.2(0.6)^{k}\right) u(k)
\end{aligned}
$$

Divide by z (delay by one)

$$
w(k)=\left(1.2(0.7)^{k-1}-1.2(0.6)^{k-1}\right) u(k-1)
$$

Other valid ways to write this are:

$$
\begin{aligned}
& w(k)=\left(1.714(0.7)^{k}-2(0.6)^{k}\right) u(k-1) \\
& w(k)=\left(0.84(0.7)^{k-2}-0.72(0.6)^{k-2}\right) u(k-2)
\end{aligned}
$$

