ECE 341 - Test #1

Combinations, Permitations, and Discrete Probability - Summer 2024

Open-Book, Open Notes. Calculators & Tarot cards allowed. Chegg or other people not allowed.

1) Permutations & Combinations in Bison Poker

Assume a 65-card deck of playing cards

- 13 card values (ace .. king)
- Five suits (clubs, diamonds, hearts, spades, bison)

Each player is dealt six cards. The best 5-card hand makes up your band in Bison poker.

Calculate the odds of being dealt three of a kind:

- best five cards include a 3-of-a-kind
- hand = $\{xxx abc\},\$
- {x, a, b, c} all have different values, suit doesn't matter.

 $M = (13c1 \ 1 \ for \ x)(5c3 \ for \ three \ x's)(12c3 \ for \ abc)(5c1 \ for \ a)(5c1 \ for \ b)(5c1 \ for \ c)$

$$M = \begin{pmatrix} 13 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 12 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$
$$M = 3,575,000$$

The number of 6-card hands:

$$N = \left(\begin{array}{c} 65\\6 \end{array}\right) = 82,598,880$$

The odds of being dealt a three of a kind:

$$p = \frac{M}{N} = 0.043281$$

2) Conditional Probability

Assume you play the following game:

- Flip a coin. (heads or tails)
- If the coin is a heads, then roll two 6-sided dice
- If the coin is a tails, then roll two 8-sided dice

Your score is the sum of the die rolls.

Determine the probability that the sum of the dice is three.

Case 1: You flip a heads

$$p(B) = 0.5$$

$$p(A|B) = \left(\frac{2}{36}\right) \qquad \text{(two ways to get a three: } 1+2 \text{ and } 2+1\text{)}$$

$$p(A) = p(A|B)p(B) = \frac{1}{36}$$

Case 2: You flip a tails

$$p(B) = 0.5$$

$$p(A|B) = \left(\frac{2}{64}\right) \qquad \text{(two ways to get a three: } 1+2 \text{ and } 2+1\text{)}$$

$$p(A) = p(A|B)p(B) = \frac{1}{64}$$

The total odds are the sum of the two

$$p(3) = \frac{1}{36} + \frac{1}{64} = 0.043403$$

3. Binomial Distribution

Let X be the number of 1's you get when rolling fourty 4-sided dice.

- die roll = $\{1\}$ 1 point
- die roll = $\{2, 3, 4\}$ 0 points

Determine the probability that X = m where m is your birth date (1..31)

40–*x*

m birth date (131)	probability X = m with fourty die rolls
15	

This is a binomial distribution

<i>p</i> (<i>x</i>) =	$= \begin{pmatrix} 40\\ x \end{pmatrix} \left(\frac{1}{4}\right)^{x} \left(\frac{3}{4}\right)$
x 1 2 3 4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 24 5 26 27 8 29 20 21 22 3 24 5 26 7 8 9 30 31	<pre>p(x) 0.0001 0.0009 0.0037 0.0113 0.0272 0.0530 0.0857 0.1179 0.1397 0.1444 0.1312 0.1057 0.0759 0.0488 0.0282 0.0147 0.0069 0.0029 0.0011 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</pre>

4. Convolution

Use convolution by hand (i.e. not with Matlab or similar programs) to determine the product of two polynomials:

$$y(x) = (5x^2 + 3x + 7)(2x + 3) = a(x) * *b(x)$$

Note: Show your work to get full credit

ans:
$$y(x) = 21 + 23x + 21x^2 + 10x^3$$

a) x^0 term (determine using convolution) = 21

-3	-2	-1	0	1	2	3	4	5
a(x)	-	-	7	3	5	-	-	-
b(k-x)	-	2	3	-	-	-	-	-
product			21					

b) x^1 term (determine using convolution) = 23

-3	-2	-1	0	1	2	3	4	5
a(x)	-	-	7	3	5	-	-	-
b(k-x)	-	-	2	3	-	-	-	-
product			14	9				

c) x^2 term (determine using convolution) = 21

-3	-2	-1	0	1	2	3	4	5
a(x)	-	-	7	3	5	-	-	-
b(k-x)	-	-	-	2	3	-	-	-
product				6	15			

d) x^3 term (determine using convolution) = 10

-3	-2	-1	0	1	2	3	4	5
a(x)	-	-	7	3	5	-	-	-
b(k-x)	-	-	-	-	2	3	-	-
product					10			

5. Geometric & z-Transforms

Let

• X be the number of rolls of an 10-sided die until you get a number from 1..3 {1, 2, 3}:

$$X = \left(\frac{0.3}{z - 0.7}\right)$$

• Y be the number of rolls a 10-sided die until you get a number from 1..4: {1, 2, 3, 4}:

$$Y = \left(\frac{0.4}{z - 0.6}\right)$$

Determine the pdf for W = X + Y using z-transforms

$$W = XY$$
$$W = \left(\frac{0.3}{z - 0.7}\right) \left(\frac{0.4}{z - 0.6}\right)$$

do partial fractions

$$W = \left(\frac{1.2}{z - 0.7}\right) + \left(\frac{-1.2}{z - 0.6}\right)$$

Multiply by z and take the inverse z-transform

$$zW = \left(\frac{1.2z}{z-0.7}\right) + \left(\frac{-1.2z}{z-0.6}\right)$$
$$zw(k) = \left(1.2(0.7)^k - 1.2(0.6)^k\right)u(k)$$

Divide by z (delay by one)

$$w(k) = \left(1.2(0.7)^{k-1} - 1.2(0.6)^{k-1}\right)u(k-1)$$

Other valid ways to write this are:

$$w(k) = \left(1.714(0.7)^{k} - 2(0.6)^{k}\right)u(k-1)$$
$$w(k) = \left(0.84(0.7)^{k-2} - 0.72(0.6)^{k-2}\right)u(k-2)$$