ECE 341 - Homework \#15

F-Test and ANOVA. Summer 2024

Test of a 3+ Populations

1) The yearly rainfall in Fargo over 20 year spans are: (units: inches per year)

- Source: Hector Airport

		mean	std	n
A	$1942-1961$	19.6925	3.6771	20
B	$1972-1991$	19.5740	4.9078	20
C	$2002-2021$	23.5047	5.3599	19

Determine if the means are the same using an ANOVA test.
Code:

```
Xa = 19.6925;
Sa = 3.6771;
Xb = 19.5740;
Sb = 4.9078;
Xc = 23.5047;
Sc = 5.3999;
Na = 20;
Nb = 20;
Nc = 19;
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*SC^2) / (N-k)
F = MSSb / MSSw
```

Reslt
$\mathrm{N}=59$
$\mathrm{G}=20.8800$
MSSb $=96.6039$
MSSw $=22.1322$
$\mathrm{F}=4.3649$
Now calculate the probability

- The numerator has $(\mathrm{k}-1)$ degrees of freedom
- The denominator has ($\mathrm{n}-\mathrm{k}$) degrees of freedom

From StatTrek, $\mathrm{p}=0.983$

I am $\mathbf{9 8 . 3 \%}$ certain these populations have different means

2) The yearly snowfalll in Fargo over 20 year spanns are: (units: inches per year)

- Source: Hector Airport

		mean	std	n
A	$1942-1961$	30.0750	15.9243	20
B	$1962-1981$	38.7700	10.1451	20
C	$1982-2001$	52.1250	23.4270	20

Determine if the means are the same using an ANOVA test.
Matlab Code:

```
Xa = 30.0750;
Sa = 15.9243;
Xb = 38.7700;
Sb = 10.1451;
Xc = 52.1250;
Sc = 23.4270;
Na = 20;
Nb = 20;
Nc = 20;
k = 3;
N = Na + Nb + NC
G = (Na*Xa + Nb*Xb + NC*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result:

```
N}=6
G = 40.3233
MSSb = 2467.2
MSSw = 301.7769
F = 8.1756
```

From StatTrek, $\mathrm{p}=0.999$
There is a $\mathbf{9 9 . 9 \%}$ chance the populations have different means

- Enter values for degrees of freedom (v_{1} and v_{2}).	
- Enter a value for one, and only one, of the other textboxe - Click Calculate to compute a value for the last textbox.	
Degrees of freedom (v_{1})	2
Degrees of freedom ($\mathbf{v}_{\mathbf{2}}$)	57
f Statistic (f)	8.1756
Probability: $\mathrm{P}(\mathrm{F} \leq 8.1756)$	0.999
Probability: $\mathrm{P}(\mathrm{F} \geq 8.1756)$	0.001
Calculate	

3) Is rainfall on a three-year cycle? The yearly rainfall in years mod 3 are (units: inches per year)

	year mod 3	mean	std	n
A	0	23.4496	5.0424	27
B	1	20.3848	4.5258	26
C	2	19.7235	4.7955	26

Determine if the means are the same using an ANOVA test.
Code:

```
Xa = 23.4496;
Sa = 5.0424;
Xb = 20.3848;
Sb = 4.5258;
Xc = 19.7325;
Sc = 4.7955;
Na = 27;
Nb = 26;
Nc = 26;
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result

$\mathrm{N}=$	79
$\mathrm{G}=$	21.2176
MSSb $=$	104.9426
MSSw $=$	23.0008
$\mathrm{~F}=$	4.5626

From StatTrek, this corresponds to a probability of 0.987
I'm $\mathbf{9 8 . 7 \%}$ certain these populations have different means (meaning there is a 3-year cycle)

