ECE 341 - Homework #13

t-Tests with Two Populations. Summer 2024

Let

- X = 4d10 (the sum of four 10-sided dice) plus 0.5 (X wins on ties)
- Y = 5d10 (the sum of five 10-sided dice)

Monte-Carlo Simulation

1) Run a Monte-Carlo simulation with 100,000 rolls for X and Y. From this, determine the probability that X will win any given game.

Code:

```
WIN = 0;
for i=1:1e5
    dx = ceil(10*rand(1,4));
    dy = ceil(10*rand(1,5));
    X = sum(dx) + 0.5;
    Y = sum(dy);
    if(X > Y) WIN = WIN + 1; end
end
```

disp(WIN)

Results (10 trials, 100,000 games per trial):

28381, 28485, 28281, 28399, 28269, 28420, 28208, 28271, 28335, 28639

90% confidence interval: The odds of X winning any given game in is the range of (28.295% ... 28.422%)

```
>> DATA =[28381, 28485, 28281, 28399, 28269, 28420, 28208, 28271, 28335, 28639];
>> n = length(DATA)
n = 10
>> x = mean(DATA)
x = 2.8369e+004
>> s = std(DATA) / sqrt(n)
s = 40.0591
>> x + 1.833*s
ans = 2.8442e+004
>> x - 1.833*s
ans = 2.8295e+004
```

t-Test: Sample Size = 4

2) Take four measurements of X and Y. From this data, determine

- The mean and standard devation of X
- The mean and standard devation of Y
- The probability that X will win any given game using a student-t test.

х:	25	16	23	29
у:	39	35	23	35

Mean and standard deviation of x:

Xx = 23.2500 Sx = 5.4391

Mean and standard deviation of y

Xy = 33 Sy = 6.9282

Mean and standard deviation of w = x - y

```
>> Xw = mean(x) - mean(y)
      Xw = -9.7500
>> Sw = sqrt( var(x) + var(y))
      Sw = 8.8081
```

t-score:

>> t = Xw / Sw t = -1.1069

>>

From StatTrek, p = 0.175

From the data, X has a 17.5% chance of winning any given game

vs. 28.29% chance using 100,000 rolls with a Monte-Carlo simulation

In the dropdown box, select the statistic of interest.		
Enter a value for degrees of freedom.		
Enter a value for all but one of the remaining textboxes.		
• Click the Calculate button to compute a value for the blank textbox.		
Statistic	t score 🗸	
Degrees of freedom	3	
t score	-1.1069	
Probability: P(T≤-1.1069)	0.175	
Calculate		

t-Test: Sample Size = 20

3) Take twenty measurements of X and Y. From this data, determine

- The mean and standard devation of X
- The mean and standard devation of Y
- The probability that X will win any given game using a student-t test

Mean and standard deviation of x:

Xx = 24 Sx = 6.6807

Mean and standard deviation of y:

Xy = 28.4000 Sy = 6.6285

Mean and standard deviation of w = x - y:

>> Xw = mean(x) - mean(y) Xw = -4.4000 >> Sw = sqrt(var(x) + var(y)) Sw = 9.4111

t-score

```
>> t = Xw / Sw
t = -0.4675
```

>>

From StatTrek, this t-score corresponds to a probabilit of 32.3%

vs. 28.29% chance using 100,000 rolls with a Monte-Carlo simulation

 In the dropdown box, select the statistic of interest. 		
Enter a value for degrees of freedom.		
Enter a value for all but one of the remaining textboxes.		
• Click the Calculate button to compute a value for the blank textbox.		
Statistic	t score 🗸	
Degrees of freedom	19	
Sample mean (x)	-0.4675	
Probability: P(X≤-0.4675)	0.323	
Calculate		

t-Test: Sample Size = 100

4) Take 100 measurements of X and Y. From this data, determine

- The mean and standard devation of X
- The mean and standard devation of Y
- The probability that X will win any given game using a student-t test

Xx =	22.6700
Sx =	5.1523
Xy =	28.0900
Sy =	6.1858
Xw =	-5.4200
Sw =	8.0505
t =	-0.6732

From StatTrek, this corresponds to a probability of 25.1%

vs. 28.29% chance using 100,000 rolls with a Monte-Carlo simulation

Method	Sample Size	probability
Monte-Carlo	100,000	28.29%
t-Test	4	17.5%
t-Test	20	32.3%
t-Test	100	25.1%

In the dropdown box, select the statistic of interest.		
Enter a value for degrees of freedom.		
• Enter a value for all but one of the remaining textboxes.		
Click the Calculate button to compute a value for the blank textbox.		
Statistic	t score 🗸	
Degrees of freedom	99	
Sample mean (x)	-0.6732	
Probability: P(X≤-0.6732)	0.251	
Calculate		

Reaction Time

5) Go to the Human Benchmark Dashboard

https://humanbenchmark.com/tests/reactiontime

(population A): April 30, 3pm

{248, 230, 233, 241, 235} ms

(population B): May 1, 8am

{214, 217, 231, 224, 216} ms

6) From your results, determine the probability that

Individual: A's time will be less than B's time next time you run the experiment

```
>> A = [248, 230, 233, 241, 235];
>> B = [214, 217, 231, 224, 216];
>> Xw = mean(A) - mean(B)
Xw = 17
>> Sw = sqrt(var(A) + var(B))
Sw = 10.0300
>> t = Xw / Sw
t = 1.6949
```

From StatTrek, this corresponds to a probability of 0.083

There is an 8.3% chance that A will be faster than B next experiment

Population:

```
>> Sw = sqrt(var(A)/5 + var(B)/5)
Sw = 4.4855
>> t = Xw / Sw
t = 3.7900
```

From StatTrek, this corresponds to a tail with an area of 0.01

There is a 1% chance that A was overall faster than B

You know more about populations than inividuals.

Aim Trainer

7) Go to the Human Benchmark Dashboard

https://humanbenchmark.com/tests/aim

(population A): Record your time to hit 30 targets with both eyes open

Time = $\{992ms, 851ms\}$

(population B): Record your time to hit 30 targets with a different condition (opposite hand,)

Time = $\{973ms, 815ms\}$

8) From your results, determine the probability that

Individual: A's time will be less than B's time next time you run the experiment

```
>> A = [992, 851];
>> B = [973, 815];
>> Xw = mean(A) - mean(B)
Xw = 27.5000
>> Sw = sqrt(var(A) + var(B))
Sw = 149.7414
>> t = Xw / Sw
t = 0.1836
```

From StatTrek, this corresponds to a probability of 0.442%

A's reaction time will be less than B's with a probability of $44.2\,\%$

Population:

>> Xw = mean(A) - mean(B) Xw = 27.5000 >> Sw = sqrt(var(A)/2 + var(B)/2) Sw = 105.8832 >> t = Xw / Sw t = 0.2597

From StatTrek, this corresponds to a tail with a probability of 41.9%

A's average reaction time is less than B's with a probability of 41.9%

- In the dropdown box, select the statistic of interest.		
Enter a value for degrees of freedom.		
 Enter a value for all but one of the remaining textboxes. 		
Click the Calculate button to compute a value for the blank textbox.		
Statistic	t score 🗸	
Degrees of freedom	1	
t score	-0.2597	
Probability: P(T≤-0.2597)	0.419	
Calculate		

- In the drandour how calest the statis