## ECE 341 - Homework \#13

t-Tests with Two Populations. Summer 2024
Let

- $\mathrm{X}=4 \mathrm{~d} 10$ (the sum of four 10 -sided dice) plus 0.5 ( X wins on ties)
- $Y=5 \mathrm{~d} 10$ (the sum of five 10 -sided dice)


## Monte-Carlo Simulation

1) Run a Monte-Carlo simulation with 100,000 rolls for $X$ and Y. From this, determine the probability that $X$ will win any given game.

Code:

```
WIN = 0;
    for i=1:1e5
        dx = ceil(10*rand(1,4));
        dy = ceil(10*rand(1,5));
        X = sum(dx) + 0.5;
        Y = sum(dy);
        if(X > Y) WIN = WIN + 1; end
    end
    disp(WIN)
```

Results (10 trials, 100,000 games per trial):

```
28381, 28485, 28281, 28399, 28269, 28420, 28208, 28271, 28335, 28639
```

$90 \%$ confidence interval: The odds of $X$ winning any given game in is the range of $(28.295 \% \ldots 28.422 \%)$

```
>> DATA =[28381, 28485, 28281, 28399, 28269, 28420, 28208, 28271, 28335, 28639];
>> n = length(DATA)
n = 10
>> x = mean(DATA)
x = 2.8369e+004
>> s = std(DATA) / sqrt(n)
s = 40.0591
>> x + 1.833*s
ans = 2.8442e+004
>> x - 1.833*s
ans = 2.8295e+004
```


## t-Test: Sample Size = 4

2) Take four measurements of $X$ and $Y$. From this data, determine

- The mean and standard devation of X
- The mean and standard devation of Y
- The probability that X will win any given game using a student-t test.

| $x:$ | 25 | 16 | 23 | 29 |
| :--- | :--- | :--- | :--- | :--- |
| $y:$ | 39 | 35 | 23 | 35 |

Mean and standard deviation of x :

$$
\begin{aligned}
& X x=23.2500 \\
& S x=5.4391
\end{aligned}
$$

Mean and standard deviation of $y$

```
Xy = 33
Sy = 6.9282
```

Mean and standard deviation of $w=x-y$

```
>> Xw = mean(x) - mean(y)
    Xw = -9.7500
>> Sw = sqrt( var(x) + var(y))
    Sw = 8.8081
```

t-score:

```
>> t = Xw / Sw
    t = -1.1069
```

>>

From StatTrek, $\mathrm{p}=0.175$
From the data, $X$ has a $17.5 \%$ chance of winning any given game
vs. $28.29 \%$ chance using 100,000 rolls with a Monte-Carlo simulation


## t-Test: Sample Size = $\mathbf{2 0}$

3) Take twenty measurements of $X$ and $Y$. From this data, determine

- The mean and standard devation of $X$
- The mean and standard devation of Y
- The probability that X will win any given game using a student-t test

Mean and standard deviation of x :

$$
\begin{array}{ll}
X x= & 24 \\
S x= & 6.6807
\end{array}
$$

Mean and standard deviation of $y$ :

$$
\begin{aligned}
& \mathrm{Xy}=28.4000 \\
& S y=6.6285
\end{aligned}
$$

Mean and standard deviation of $\mathrm{w}=\mathrm{x}-\mathrm{y}$ :

```
>> Xw = mean(x) - mean(y)
Xw = -4.4000
>> Sw = sqrt( var(x) + var(y) )
Sw = 9.4111
```

t-score

```
>> t = Xw / Sw
\(t=-0.4675\)
```

>>
From StatTrek, this $\mathbf{t}$-score corresponds to a probabilit of $\mathbf{3 2 . 3 \%}$
vs. $28.29 \%$ chance using 100,000 rolls with a Monte-Carlo simulation

- In the dropdown box, select the statistic of interest.
- Enter a value for degrees of freedom.
- Enter a value for all but one of the remaining textboxes.
- Click the Calculate button to compute a value for the blank textbox.



## t -Test: Sample Size $\mathbf{= 1 0 0}$

4) Take 100 measurements of $X$ and $Y$. From this data, determine

- The mean and standard devation of X
- The mean and standard devation of Y
- The probability that X will win any given game using a student-t test

```
Xx = 22.6700
Sx = 5.1523
Xy = 28.0900
Sy = 6.1858
Xw = -5.4200
Sw = 8.0505
t = -0.6732
```

From StatTrek, this corresponds to a probability of $\mathbf{2 5 . 1 \%}$
vs. $28.29 \%$ chance using 100,000 rolls with a Monte-Carlo simulation

| Method | Sample Size | probability |
| :---: | :---: | :---: |
| Monte-Carlo | 100,000 | $28.29 \%$ |
| t-Test | 4 | $17.5 \%$ |
| t-Test | 20 | $32.3 \%$ |
| t-Test | 100 | $25.1 \%$ |

- In the dropdown box, select the statistic of interest.
- Enter a value for degrees of freedom.
- Enter a value for all but one of the remaining textboxes.
- Click the Calculate button to compute a value for the blank textbox.


Reaction Time
5) Go to the Human Benchmark Dashboard
https://humanbenchmark.com/tests/reactiontime
(population A): April 30, 3pm
$\{248,230,233,241,235\} \mathrm{ms}$
(population B): May 1, 8am
$\{214,217,231,224,216\} \mathrm{ms}$
6) From your results, determine the probability that

Individual: A's time will be less than B's time next time you run the experiment

```
>> A = [248, 230, 233, 241, 235];
>> B = [214, 217, 231, 224, 216];
>> Xw = mean(A) - mean(B)
Xw =
    1 7
>> Sw = sqrt(var(A) + var(B))
SW = 10.0300
>> t = Xw / Sw
t = 1.6949
```

From StatTrek, this corresponds to a probability of 0.083
There is an $8.3 \%$ chance that $A$ will be faster than $B$ next experiment

## Population:

```
>> Sw = sqrt(var(A)/5 + var(B)/5)
    Sw = 4.4855
    >> t = Xw / Sw
    t = 3.7900
```

From StatTrek, this corresponds to a tail with an area of 0.01

## There is a $\mathbf{1 \%}$ chance that A was overall faster than B

You know more about populations than inividuals.

## Aim Trainer

7) Go to the Human Benchmark Dashboard
```
https://humanbenchmark.com/tests/aim
```

(population A): Record your time to hit 30 targets with both eyes open
Time $=\{992 \mathrm{~ms}, 851 \mathrm{~ms}\}$
(population B): Record your time to hit 30 targets with a different condition (opposite hand,)

$$
\text { Time }=\{973 \mathrm{~ms}, 815 \mathrm{~ms}\}
$$

8) From your results, determine the probability that

Individual: A's time will be less than B's time next time you run the experiment

```
>> A = [992, 851];
>> B = [973,815];
>> Xw = mean(A) - mean(B)
Xw = 27.5000
>> Sw = sqrt(var(A) + var(B))
Sw = 149.7414
>> t = Xw / Sw
t = 0.1836
```

From StatTrek, this corresponds to a probability of $0.442 \%$

- In the dropdown box, select the statistic of interest.
- Enter a value for degrees of freedom.
- Enter a value for all but one of the remaining textboxes.
- Click the Calculate button to compute a value for the blank textbox.


Calculate

A's reaction time will be less than B's with a probability of $\mathbf{4 4 . 2 \%}$

## Population:

```
>> Xw = mean(A) - mean(B)
XW= 27.5000
>> Sw = sqrt(var(A)/2 + var(B)/2)
SW = 105.8832
>> t = XW / SW
t=0.2597
```

From StatTrek, this corresponds to a tail with a probability of $41.9 \%$

A's average reaction time is less than B's with a probability of $\mathbf{4 1 . 9 \%}$

