ECE 341 - Homework \#12

t-Test with a Single Population. Summer 2024

6-Card Stud Poker

The computed odds of being dealt a full-house in 6-card poker are in homework set \#2.

1) The result of four Monte-Carlo simulations with 100,000 poker hands are:
```
811 805 809 804
```

From these results, determine the 90% confidence interval for the odds of being dealt a full-house
The t -score for 5% tails and 3 degrees of freedom (sample size $=4$) is

$$
t=2.355
$$

The $\mathbf{9 0 \%}$ confidence interval is $\mathbf{(8 0 3 . 3 5 9 5}, \mathbf{8 1 1 . 1 4 0 5)}$

- calculated odds: 815.3048 in 100,000 hands
- The data suggests the calculations were slightly high

Note: This is a population question (trying to find the population's mean). Divide the variance by the sample size

```
>> Data = [811 805 809 804 ];
>> x = mean(Data)
x = 807.2500
>> s = std(Data) / sqrt(4)
s = 1.6520
>> x + 2.355*s
ans = 811.1405
>> x - 2.355*s
ans = 803.3595
>>
```


6-Card Stud Poker

2) The result of twenty Monte-Carlo simulations with 100,000 poker hands are:

811	805	809	804	837	830	841	770	889	821
850	754	786	763	754	855	785	724	815	823

From these results, determine the 90% confidence interval for the odds of getting a full-house.

- The t -score for 5% tails and 19 degrees of freedom is 1.729

The $\mathbf{9 0 \%}$ confidence interval is $\mathbf{(7 9 0 . 7 4 9 6}, \mathbf{8 2 1 . 8 5 0 4})$ in $\mathbf{1 0 0 , 0 0 0}$ hands

- Calculated odds are 815.3048 in 100,000 hands
- This is within the calculated 90% confidence interval, so calculations might be correct

```
>> DATA = [llllllllllllllllll
786 763 754 855 785 724 815 823];
>> x = mean(DATA)
x = 806.3000
>> n = length(DATA)
n=20
>> s = std(DATA) / sqrt(n)
S=8.9939
>>x + 1.729*s
ans=821.8504
>>x-1.729*s
ans=790.7496
>>
    *)
```


6-Card Draw

The computed odds of getting a full house in 6-card poker with a draw step was found in homework \#2
3) The result of four Monte-Carlo simulations with 100,000 poker hands are:
$\begin{array}{llll}3747 & 3633 & 3764 & 3692\end{array}$
From these results, determine the 90% confidence interval for the odds of getting a full-house.
$\mathbf{9 0 \%}$ confidence interval $=(\mathbf{3 6 3 9 . 2}, \mathbf{3 7 7 8 . 8})$

- Calculated odds are 3570 in 100,000 hands

```
>> DATA = [l3747 3633 3764 3692];
>> n = length(DATA)
n = 4
>> x = mean(DATA)
x =
                                3 7 0 9
>> s = std(DATA) / sqrt(n)
s = 29.6283
>> x + 2.355*s
ans = 3.7788e+003
>> x - 2.355*s
ans = 3.6392e+003
```


6-Card Draw (sample size = 20)

4) The result of twenty Monte-Carlo simulations with 100,000 poker hands are:

3747	3633	3764	3692	3760	3793	3778	3708	3786	3650
3664	3777	3744	3788	3739	3620	3701	3759	3848	3693

From these results, determine the 90% confidence interval for the odds of getting a full house.
90% confidence interval $=(\mathbf{3 7 0 9 . 0}, \mathbf{3 7 5 5 . 4})$

- Calculated odds are 3570 in 100,000 hands
- probably, the calculations are off or the Monte-Carlo simulation has errors

```
>> DATA = [lllllllllllllllllllllll
    3744 3788 3739 3620 3701 3759 3848 3693];
>> n = length(DATA)
n = 20
>> x = mean(DATA)
x=3.7322e+003
>> s = std(DATA) / sqrt(n)
s=13.4434
>>x + 1.729*s
ans=3.7554e+003
>>x-1.729*s
ans=3.7090e+003
>>
```


Repeating with corrected code:

```
5663, 5833, 5576, 5602, 5587, 5623, 5787, 5751, 5579, 5730
>> DATA = [5663, 5833, 5576, 5602, 5587, 5623, 5787, 5751, 5579, 5730];
>> x = mean(DATA)
x = 5.6731e+003
>> s = std(DATA)
s = 94.9918
>> s = std(DATA) / sqrt(10)
s = 30.0390
>> x + 1.833*s
ans = 5.7282e+003
>> x - 1.833*s
ans = 5.6180e+003
```

The $\mathbf{9 0 \%}$ confidence interval is (5618.0, 5728.2)

- Calculated odds are 5517.4
- It appears calculations were a little low

Reaction Time

5) Go to the Human Benchmark Dashboard and record your reaction time
https://humanbenchmark.com/tests/reactiontime
Times: $\{230 \mathrm{~ms}, 248 \mathrm{~ms}, 233 \mathrm{~ms}, 241 \mathrm{~ms}\}$
6) From your results, determine the 90% confidence interval for your reaction time.

In this case, it's an individual test (one more trial) so you do not divide by the square-root of sample size

The 90% confidence interval for any given trial is ($218.86 \mathrm{~ms}, 257.13 \mathrm{~ms}$)

```
>> DATA = [230,248,233,241];
>> x = mean(DATA)
x = 238
>> s = std(DATA)
s = 8.1240
>> x + 2.355*s
ans = 257.1321
>> x - 2.355*s
ans = 218.8679
>>
```


7) From your results, determine the probability that

Your next trial will be less than 200 ms
Individual Case. The t -score is

```
>> t = (200 - x)/s
t = -4.6775
```

From StatTrek, a t-score of 4.6775 with 3 degrees of freedom corresponds to a probability of 0.009
There is a 0.9% chance my next score will be less than 200 ms

Your average reaction time is less than 200 ms
Population (my average reaction time)

```
>> n = length(DATA)
n = 4
>> s = std(DATA) / sqrt(n)
s = 4.0620
>> t = (200 - x)/s
t = -9.3550
```

From StatTrek this corresponds to a probabilty of 0.001

There is a 0.1% chance my average score will is less than 200 ms

- In the dropdown box, select the statistic of interest.
- Enter a value for degrees of freedom.
- Enter a value for all but one of the remaining textboxes.
- Click the Calculate button to compute a value for the blank textbox.

Probability: $\mathbf{P}(\mathbf{X} \leq-9.355) \quad 0.001$

Calculate

