ECE 341 - Homework \#11

Markov Chains. Summer 2024

Markov Chains

Four people are playing a game of hot potato. Each second, a player can keep the potato or pass it to another player. The probability of each decision are as follows:

1) Assume player A starts with the potato. Determine the probability that each player has the potato after 10 tosses using matrix multiplication.

$$
\begin{aligned}
& {\left[\begin{array}{l}
A(k+1) \\
B(k+1) \\
C(k+1) \\
D(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
0.3 & 0 & 0.5 & 0 \\
0.2 & 0.4 & 0 & 0.3 \\
0 & 0.6 & 0.1 & 0 \\
0.5 & 0 & 0.4 & 0.7
\end{array}\right]\left[\begin{array}{c}
A(k) \\
B(k) \\
C(k) \\
D(k)
\end{array}\right]} \\
& \gg M=[0.3,0,0.5,0 ; 0.2,0.4,0,0.3 ; 0,0.6,0.1,0 ; 0.5,0,0.4,0.7] \\
& \begin{array}{rrrr}
0.3000 & 0 & 0.5000 & 0 \\
0.2000 & 0.4000 & 0 & 0.3000 \\
0 & 0.6000 & 0.1000 & 0 \\
0.5000 & 0 & 0.4000 & 0.7000
\end{array} \\
& \text { >> } \mathrm{XO}=[1 ; 0 ; 0 ; 0] \text {; } \\
& \text { >> M^10 * X0 } \\
& \text { a } 0.1245 \\
& \text { b } 0.2614 \\
& \text { c } 0.1744 \\
& \text { d } 0.4397
\end{aligned}
$$

After ten tosses, there is a 12.45% chance that A has the ball...
2) Assume player A starts with the potato. Determine the probability that player A has the potato after k tosses using z-transforms.

- What is the probability that player A has the potato after infinite tosses?

```
>> A = M;
>> X0 = [1;0;0;0];
>> C = [1,0,0,0];
>> D = 0;
>> G = ss(A,XO,C,D,1);
>> zpk(G)
    (z-0.8875) (z^2 - 0.3125z + 0.1127)
--------------------------------------------
(z-1) (z-0.1344) (z^2 - 0.3656z + 0.2009)
Sampling time (seconds): 1
```

Multiply by z to get the z-transform for $\mathrm{A}(\mathrm{k})$

$$
A(z)=\left(\frac{(z-0.8875)\left(z^{2}-0.3125 z+0.1127\right) z}{(z-1)(z-0.1344)\left(z^{2}-0.3656 z+0.2009\right)}\right)
$$

Do a patrial fraction expansion

$$
A(z)=\left(\left(\frac{0.1245}{z-1}\right)+\left(\frac{0.4547}{z-0.1344}\right)+\left(\frac{0.2153 \angle-12.28^{0}}{z-0.4482 \angle 65.93^{0}}\right)+\left(\frac{0.2153 \angle 12.28^{0}}{z-0.4482 \angle-65.93^{0}}\right)\right) z
$$

Take the inverse z-transform

$$
\begin{aligned}
& a(k)=0.1245+0.4547(0.1344)^{k}+0.4306(0.4482)^{k} \cos \left(65.93^{0} \cdot k+12.28^{0}\right) \quad k>=0 \\
& a(\infty)=0.1245
\end{aligned}
$$

3) Assume player A starts with the potato. Determine the probability that player A has the potato after k tosses using eigenvalues and eigenvectors.
```
>> [M,V] = eig(A)
    0.2244 0.6084 0.6084 -0.8078
    0.4713 -0.3593 - 0.0286i -0.3593 + 0.0286i 0.0153
    0.3142 -0.1426 + 0.4979i -0.1426 - 0.4979i 0.2675
    0.7930 -0.1065 - 0.4694i -0.1065 + 0.4694i 0.5250
    1.0000 0.1828 - 0.4092i 0.1828 + 0.4092i 0.1344
>> X0 = [1;0;0;0];
>> IC = inv(M)*X0
    0.5547 - 0.0000i
    0.3458 - 0.0753i
    0.3458 + 0.0753i
    -0.5629 + 0.0000i
```

Translation...

$$
\begin{aligned}
a(k)= & 0.5547\left[\begin{array}{l}
0.2244 \\
0.4713 \\
0.3142 \\
0.7930
\end{array}\right](1)^{k} \\
& +(0.3458-j 0.0753)\left[\begin{array}{c}
0.6084 \\
-0.3593-j 0.0286 \\
-0.1426+j 0.4979 \\
-0.1065-j 0.4694
\end{array}\right](0.1828-j 0.4092)^{k} \\
& +(0.3458+j 0.0753)\left[\begin{array}{c}
0.6084 \\
-0.3593+j 0.0286 \\
-0.1426-j 0.4979 \\
-0.1065+j 0.4694
\end{array}\right](0.1828+j 0.4092)^{k} \\
& +(-0.5620)\left[\begin{array}{c}
-0.8078 \\
0.0153 \\
0.2675 \\
0.5250
\end{array}\right]
\end{aligned}
$$

Markov Chains with Absorbing States

Problem 4 \& 5: Two teams, A and B, are playing a match made up of N games. For each game

- Team A has a 40% chance of winning
- There is a 25% chance of a tie, and
- Team B has a 35% chance of winning

In order to win the match, a team must be up by 2 games.
4) Determine the probabilty that team A wins the match after k games for $\mathrm{k}=\{0 \ldots 10\}$ using matrix multiplication.

This is a Markov chain

$$
\left[\begin{array}{c}
P 2(k+1) \\
P 1(k+1) \\
P 0(k+1) \\
M 1(k+1) \\
M 2(k+1)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0.4 & 0 & 0 & 0 \\
0 & 0.25 & 0.4 & 0 & 0 \\
0 & 0.35 & 0.25 & 0.4 & 0 \\
0 & 0 & 0.35 & 0.25 & 0 \\
0 & 0 & 0 & 0.35 & 1
\end{array}\right]\left[\begin{array}{c}
P 2(k) \\
P 1(k) \\
P 0(k) \\
M 1(k) \\
M 2(k)
\end{array}\right]
$$

In Matlab
>> A =
$[1,0.4,0,0,0 ; 0,0.25,0.4,0,0 ; 0,0.35,0.25,0.4,0 ; 0,0,0.35,0.25,0 ; 0,0,0,0.35,1]$

1.0000	0.4000	0	0	0
0	0.2500	0.4000	0	0
0	0.3500	0.2500	0.4000	0
0	0	0.3500	0.2500	0
0	0	0	0.3500	1.0000

```
>> X0 = [0;0;1;0;0];
>> C = [1,0,0,0,0];
>> for n=0:10
    y = C * A^n * X0;
    disp([n,y]);
    end
```

n	p (A wins)
0	0
1.	0
2.0000	
3.0000	0.1600
4.0000	0.3400
5.0000	0.3696
6.0000	0.4133
7.0000	0.4470
8.0000	0.4734
9.0000	0.4939
10.0000	0.5099

5) Determine the z-transform for the probability that A wins the match after k games

- From the z transforms, determine the explicit function for $\mathrm{p}(\mathrm{A})$ wins after game k .

```
>> G = ss(A, X0, C, 0, 1);
>> zpk(G)
Zero/pole/gain:
    0.16 (z-0.25)
(z-1) (z-0.7792) (z-0.25) (z+0.2792)
```

Sampling time (seconds): 1
meaning

$$
A(z)=\left(\frac{0.16(z-0.25) z}{(z-1)(z-0.7792)(z-0.25)(z+0.2792)}\right)
$$

Do a partial fraction expansion

$$
A(z)=\left(\left(\frac{0.5664}{z-1}\right)+\left(\frac{-0.6846}{z-0.7792}\right)+\left(\frac{0}{z-0.25}\right)+\left(\frac{0.1182}{z+0.2792}\right)\right) z
$$

Take the inverse z-transform

$$
a(k)=\left(0.5664-0.6846(0.7792)^{k}+0.1182(-0.2792)^{k}\right) u(k)
$$

Problem 6: Two players are playing a game of tennis. To win a game, a player must win 4 points and be up by 2 points.

- If player A reaches 4 points and player B has less than 3 points, the game is over and player A wins.
- If player A reaches 4 points and player B has 3 points, then the game reverts to 'win by 2 ' rules. Both players keep playing until one of them is up by 2 games.

Supppose:

- Player A has a 65% chance of winning any given point
- Player B has a 35% chance of winning any given point.

What is the probabilty that player A wins the game (first to 4 games, win by 2)?

- Note: This is a combination of a binomial distribution (A has 4 points while B has 0,1 , or 2 points) along with a Markov chain (A and B both have 3 points, at which point it becomes a win-by-2 series)

This is a conditional probability. The ways A can win are:

- A wins when the match is 3-0
- A wins when the match is 3-1
- A wins when the match is 3-2
- A wins a tie-breaker after going 3-3
binomial distribution
binomial distribution
binomial distribution
Markov chain

From a binomial distribution, the odds are
3-0:

$$
p=\binom{3}{3}(0.65)^{3}(0.35)^{0}=0.2746
$$

3-1:

$$
p=\binom{4}{3}(0.65)^{3}(0.35)^{1}=0.3845
$$

3-2:

$$
p=\binom{5}{3}(0.65)^{3}(0.35)^{2}=0.3364
$$

3-3:

$$
p=\binom{6}{3}(0.65)^{3}(0.35)^{3}=0.2355
$$

If you are at 3-3, it's now a Markov chain where you have to win by two:

$$
\left[\begin{array}{c}
P 2(k+1) \\
P 1(k+1) \\
P 0(k+1) \\
M 1(k+1) \\
M 2(k+1)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0.65 & 0 & 0 & 0 \\
0 & 0 & 0.65 & 0 & 0 \\
0 & 0.35 & 0 & 0.65 & 0 \\
0 & 0 & 0.35 & 0 & 0 \\
0 & 0 & 0 & 0.35 & 1
\end{array}\right]\left[\begin{array}{c}
P 2(k) \\
P 1(k) \\
P 0(k) \\
M 1(k) \\
M 2(k)
\end{array}\right]
$$

The probability that A wins this series is:

```
>> A = [1,0.65,0,0,0;0,0,0.65,0,0;0,0.35,0,0.65,0;0,0,0.35,0,0;0,0,0,0.35,1]
\begin{tabular}{rrrrr}
1.0000 & 0.6500 & 0 & 0 & 0 \\
0 & 0 & 0.6500 & 0 & 0 \\
0 & 0.3500 & 0 & 0.6500 & 0 \\
0 & 0 & 0.3500 & 0 & 0 \\
0 & 0 & 0 & 0.3500 & 1.0000
\end{tabular}
>> X0 = [0;0;1;0;0];
>> A^100 * X0
    0.7752
    0
    0.0000
    0.2248
```

The probability A wins starting from 3-3 is 0.7752

The total odds of A winning are then

$$
\begin{aligned}
& p(A)=p \cdot p(3-0)+p \cdot p(3-1)+p \cdot p(3-2)+p(3-3) p(A \mid 3-3) \\
& p(A)=(0.65)(0.2746)+(0.65)(0.3845)+(0.65)(0.3364)+(0.2355)(0.7752) \\
& p=0.8296
\end{aligned}
$$

A player who has a 65% chance of winning any given point has an 82.96% chance of winning a tennis match

