ECE 341 - Homework \#9

Weibull Distribution, Central Limit Theorem. Summer 2024

Weibull Distribution

1) Determine and plot the cdf for the voltage, Y , in homework set \#7 problem \#3
```
Data = 0;
for i = 1:1e3
    R1 = (1 + 0.05*(rand*2-1)) * 1000;
    R2 = (1 + 0.05*(rand*2-1)) * 4000;
    R3 = (1 + 0.05*(rand*2-1)) * 1000;
    R4 = (1 + 0.05*(rand*2-1)) * 4000;
    A = 3;
    B = 2;
    Y = (R3+R4)/R3 * R2/(R1+R2) * A - (R4/R3)*B;
    Data = [Data;Y];
end
Data = sort(Data);
p = [1:length(Data)]';
p = p / max(p);
```

plot(Data, p);

2) Determine and plot the pdf for this voltage using a Weibull approximation for the cdf

Save the data from problem \#1

```
>> Volts = Volts(2:1001);
>> p = p(2:1001);
>> save HW9 Volts p
```

Create a funciton to return the sum-squared error between the actual CDF and a Weibull CDF

```
function y = Weibull(z)
% Weibull distribution curve fit
k = z(1);
L = z(2);
load HW9
x = Volts;
x0 = min(x);
% p(Vce) = target
W = 1 - exp( - ( ((x-x0) /L) .^ k ));
e = p - W;
plot(Volts, p, 'b', Volts, W, 'r');
pause(0.01);
y = sum(e.^2);
end
```

Optimize with fminsearch

```
>> [Z,e] = fminsearch('Weibull',[1,1])
Z = 3.1595 0.3761
e = 0.0505
```


So, the CDF is approximately

$$
F(x) \approx\left(1-\exp \left(-\left(\frac{x}{3.1595}\right)^{0.3761}\right)\right)+3.6657
$$

The pdf is then

$$
f(x) \approx \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} \exp \left(-\left(\frac{x}{\lambda}\right)^{k}\right) u(k)
$$

Shift by x0 (3.6657 Volts)

```
    f(x-\mp@subsup{x}{0}{})\approx\frac{3.1595}{0.3761}(\frac{x}{0.3761}\mp@subsup{)}{}{3.1595-1}\operatorname{exp}(-(\frac{x}{0.3761}\mp@subsup{)}{}{3.1595})u(k)
    >> k = Z(1);
    >> L = Z(2);
    >> x0 = min(Volts);
    >> x = [0:0.01:10]';
    >> pdf = (k/L) * (x/L).^(k-1) .* exp(- (x/L).^k);
    >> cdf = 1 - exp(-(x/L).^k);
    >> plot(x+x0,pdf,'b',x+x0,cdf,'r');
    >> xlabel('Volts');
    >> xlim([3,5])
    >> plot(x+x0,pdf/2,'b',x+x0,cdf,'r');
    >> xlim([3,5])
    >> xlabel('Volts');
```

>>

pdf (blue) \& cdf (red)

Central Limit Theorem

The mean and standard deviation for a 4, 6, and 8-sided die are

Die	d 4	d 6	d 8	d 10	d 12
mean	2.5	3.5	4.5	5.5	6.5
standard deviation	1.1180	1.7078	2.2191	2.8723	3.4521
variance	1.2500	2.9166	5.2487	8.25	11.9167

3) Let Y be the sum of rolling four 10-sided dice (homework \#4 problem 4):

$$
\mathrm{Y}=4 \mathrm{~d} 10
$$

a) What is the mean and standard deviation of Y?

$$
\begin{aligned}
& \mu_{y}=4 \mu_{d 10}=22 \\
& \sigma_{y}^{2}=4 \sigma_{d 10}^{2}=33 \\
& \sigma_{y}=\sqrt{33}=5.7445
\end{aligned}
$$

Note: Homework \#4 found the mean and standard deviation using convolution:

- Mean $=22.0000$
- $\operatorname{StDev}=5.7446$

The Central Limit theroem gets you the same answer with a lot less work.
b) Using a normal approximation, what is the 90% confidence interval for Y ?
5% tails corresponds to a z-score of 1.64485

$$
\begin{aligned}
& \mu_{y}-1.64485 \sigma_{y}<\text { roll }<\mu_{y}+1.64485 \sigma_{y} \\
& 12.5511<\text { roll }<31.4489
\end{aligned}
$$

c) Using a normal approximation, what is the probability that the sum the dice will be more than 29.5 ?

Find the z-score

$$
z=\left(\frac{29.5-\mu_{y}}{\sigma_{y}}\right)=\left(\frac{29.5-22}{5.7445}\right)=1.3056
$$

From StatTrek, this z-score corresponds to a tail of $\mathbf{0 . 0 9 5 8 4}$
d) Compare these results to the actual odds (from homework \#4)

```
>> sum(IceStorm(31:41))
ans = 0.0857
```

Close but a little off. The error comes from where you mark the cutoff between 29 and 30 (29.1? 29.5? 29.9?)
4) Let Y be the sum of rolling four 6 -sided dice and two 8 -sided dice (homework \#4 problem 5):

$$
\mathrm{Y}=4 \mathrm{~d} 6+2 \mathrm{~d} 8
$$

a) What is the mean and standard deviation of Y ?

$$
\begin{aligned}
& \mu_{y}=4 \mu_{d 6}+2 \mu_{d 8} \\
& \mu_{y}=23 \\
& \sigma_{y}^{2}=4 \sigma_{d 6}^{2}+2 \sigma_{d 8}^{2} \\
& \sigma_{y}^{2}=22.1638 \\
& \sigma_{y}=4.7078
\end{aligned}
$$

b) Using a normal approximation, what is the 90% confidence interval for Y ?

$$
\begin{aligned}
& \mu_{y}-1.64485 \sigma_{y}<\text { roll }<\mu_{y}+1.64485 \sigma_{y} \\
& 15.2564<\text { roll }<30.7436
\end{aligned}
$$

c) Using a normal approximation, what is the probability that the sum the dice will be more than 29.5 ?

$$
\begin{aligned}
& z=\left(\frac{29.5-\mu}{\sigma}\right) \\
& z=\left(\frac{29.5-22}{4.7078}\right)=1.3807
\end{aligned}
$$

From StatTrek, this corresponds to a probability of $\mathbf{0 . 0 8 5 2 2}$
d) Compare these results to the actual odds (from homework \#4)

```
>> Mean = sum(IceStorm .* n)
Mean = 23.0000
>> Variance = sum( IceStorm .* (n - Mean).^2 )
Variance = 22.1667
>> StDev = sqrt(Variance)
StDev = 4.7081
>> sum(IceStorm(31:41))
ans = 0.0857
```

Same results with a lo tless work
5) Let Y be the sum of rolling five dice (homework \#4 problem 6)

$$
\mathrm{Y}=\mathrm{d} 4+\mathrm{d} 6+\mathrm{d} 8+\mathrm{d} 10+\mathrm{d} 12
$$

a) What is the mean and standard deviation of Y?

$$
\begin{aligned}
& \mu_{y}=\mu_{d 4}+\mu_{d 6}+\mu_{d 8}+\mu_{d 10}+\mu_{d 12} \\
& \mu_{y}=22.5 \\
& \sigma_{y}^{2}=\sigma_{d 4}^{2}+\sigma_{d 6}^{2}+\sigma_{d 8}^{2}+\sigma_{d 10}^{2}+\sigma_{d 12}^{2} \\
& \sigma_{y}^{2}=29.5820 \\
& \sigma_{y}=\sqrt{29.5820}=5.4389
\end{aligned}
$$

b) Using a normal approximation, what is the 90% confidence interval for Y ?

$$
\begin{aligned}
& \mu_{y}-1.64485 \sigma_{y}<\text { roll }<\mu_{y}+1.64485 \sigma_{y} \\
& 13.5538<\text { roll }<31.4462
\end{aligned}
$$

c) Using a normal approximation, what is the probability that the sum the dice will be more than 29.5 ?

$$
\begin{aligned}
& z=\left(\frac{29.5-\mu}{\sigma}\right) \\
& z=\left(\frac{29.5-22.5}{5.4389}\right)=1.27870
\end{aligned}
$$

From StatTrek:

$$
\mathrm{p}=0.09905
$$

d) Compare these results to the actual odds (from homework \#4)

Same mean and standard deviation as homework \#4
Almost the same odds:

```
>> sum(Prob6(31:41))
ans = 0.1039
```

Almost the same - the difference comes from where you draw the line between 29 and 30

