ECE 341 - Homework #9

Weibull Distribution, Central Limit Theorem. Summer 2024

Weibull Distribution

```
1) Determine and plot the cdf for the voltage, Y, in homework set #7 problem #3
```

```
Data = 0;
for i = 1:1e3
    R1 = (1 + 0.05*(rand*2-1)) * 1000;
    R2 = (1 + 0.05*(rand*2-1)) * 4000;
    R3 = (1 + 0.05*(rand*2-1)) * 1000;
    R4 = (1 + 0.05*(rand*2-1)) * 4000;
    A = 3;
    B = 2;
    Y = (R3+R4)/R3 * R2/(R1+R2) * A - (R4/R3)*B;
    Data = [Data;Y];
end
Data = sort(Data);
p = [1:length(Data)]';
p = p / max(p);
plot(Data, p);
```


2) Determine and plot the pdf for this voltage using a Weibull approximation for the cdf

Save the data from problem #1

```
>> Volts = Volts(2:1001);
>> p = p(2:1001);
>> save HW9 Volts p
```

Create a funciton to return the sum-squared error between the actual CDF and a Weibull CDF

```
function y = Weibull(z)
% Weibull distribution curve fit
k = z(1);
L = z(2);
load HW9
x = Volts;
x0 = min(x);
% p(Vce) = target
W = 1 - exp(-(((x-x0)/L) .^ k));
e = p - W;
plot(Volts, p, 'b', Volts, W, 'r');
pause(0.01);
y = sum(e.^2);
end
```

Optimize with fminsearch

So, the CDF is approximately

$$F(x) \approx \left(1 - \exp\left(-\left(\frac{x}{3.1595}\right)^{0.3761}\right)\right) + 3.6657$$

The pdf is then

$$f(x) \approx \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} \exp\left(-\left(\frac{x}{\lambda}\right)^k\right) u(k)$$

Shift by x0 (3.6657 Volts)

$$f(x-x_0) \approx \frac{3.1595}{0.3761} \left(\frac{x}{0.3761}\right)^{3.1595-1} \exp\left(-\left(\frac{x}{0.3761}\right)^{3.1595}\right) u(k)$$

```
>> k = Z(1);
>> L = Z(2);
>> x0 = min(Volts);
>> pdf = (k/L) * (x/L).^(k-1) .* exp(-(x/L).^k);
>> cdf = 1 - exp(-(x/L).^k);
>> plot(x+x0,pdf,'b',x+x0,cdf,'r');
>> xlabel('Volts');
>> xlim([3,5])
>> plot(x+x0,pdf/2,'b',x+x0,cdf,'r');
>> xlim([3,5])
>> xlabel('Volts');
```


pdf (blue) & cdf (red)

Central Limit Theorem

Die	d4	d6	d8	d10	d12
mean	2.5	3.5	4.5	5.5	6.5
standard deviation	1.1180	1.7078	2.2191	2.8723	3.4521
variance	1.2500	2.9166	5.2487	8.25	11.9167

The mean and standard deviation for a 4, 6, and 8-sided die are

3) Let Y be the sum of rolling four 10-sided dice (homework #4 problem 4):

Y = 4d10

a) What is the mean and standard deviation of Y?

$$\mu_{y} = 4\mu_{d10} = 22$$

$$\sigma_{y}^{2} = 4\sigma_{d10}^{2} = 33$$

$$\sigma_{y} = \sqrt{33} = 5.7445$$

Note: Homework #4 found the mean and standard deviation using convolution:

- Mean = 22.0000
- StDev = 5.7446

The Central Limit theroem gets you the same answer with a lot less work.

b) Using a normal approximation, what is the 90% confidence interval for Y?

5% tails corresponds to a z-score of 1.64485

$$\mu_y - 1.64485\sigma_y < roll < \mu_y + 1.64485\sigma_y$$

12.5511 < roll < 31.4489

c) Using a normal approximation, what is the probability that the sum the dice will be more than 29.5? Find the z-score

$$z = \left(\frac{29.5 - \mu_y}{\sigma_y}\right) = \left(\frac{29.5 - 22}{5.7445}\right) = 1.3056$$

From StatTrek, this z-score corresponds to a tail of 0.09584

d) Compare these results to the actual odds (from homework #4)

```
>> sum(IceStorm(31:41))
ans = 0.0857
```

Close but a little off. The error comes from where you mark the cutoff between 29 and 30 (29.1? 29.5? 29.9?)

4) Let Y be the sum of rolling four 6-sided dice and two 8-sided dice (homework #4 problem 5):

$$Y = 4d6 + 2d8$$

a) What is the mean and standard deviation of Y?

$$\mu_y = 4\mu_{d6} + 2\mu_{d8}$$
$$\mu_y = 23$$
$$\sigma_y^2 = 4\sigma_{d6}^2 + 2\sigma_{d8}^2$$
$$\sigma_y^2 = 22.1638$$
$$\sigma_y = 4.7078$$

b) Using a normal approximation, what is the 90% confidence interval for Y?

$$\mu_y - 1.64485\sigma_y < roll < \mu_y + 1.64485\sigma_y$$

15.2564 < roll < 30.7436

c) Using a normal approximation, what is the probability that the sum the dice will be more than 29.5?

$$z = \left(\frac{29.5 - \mu}{\sigma}\right)$$
$$z = \left(\frac{29.5 - 22}{4.7078}\right) = 1.3807$$

From StatTrek, this corresponds to a probability of 0.08522

d) Compare these results to the actual odds (from homework #4)

```
>> Mean = sum(IceStorm .* n)
Mean = 23.0000
>> Variance = sum( IceStorm .* (n - Mean).^2 )
Variance = 22.1667
>> StDev = sqrt(Variance)
StDev = 4.7081
>> sum(IceStorm(31:41))
ans = 0.0857
```

Same results with a lo tless work

5) Let Y be the sum of rolling five dice (homework #4 problem 6)

Y = d4 + d6 + d8 + d10 + d12

a) What is the mean and standard deviation of Y?

$$\mu_{y} = \mu_{d4} + \mu_{d6} + \mu_{d8} + \mu_{d10} + \mu_{d12}$$

$$\mu_{y} = 22.5$$

$$\sigma_{y}^{2} = \sigma_{d4}^{2} + \sigma_{d6}^{2} + \sigma_{d8}^{2} + \sigma_{d10}^{2} + \sigma_{d12}^{2}$$

$$\sigma_{y}^{2} = 29.5820$$

$$\sigma_{y} = \sqrt{29.5820} = 5.4389$$

b) Using a normal approximation, what is the 90% confidence interval for Y?

$$\mu_y - 1.64485\sigma_y < roll < \mu_y + 1.64485\sigma_y$$

13.5538 < roll < 31.4462

c) Using a normal approximation, what is the probability that the sum the dice will be more than 29.5?

$$z = \left(\frac{29.5 - \mu}{\sigma}\right)$$
$$z = \left(\frac{29.5 - 22.5}{5.4389}\right) = 1.27870$$

From StatTrek:

$$p = 0.09905$$

d) Compare these results to the actual odds (from homework #4)

Same mean and standard deviation as homework #4

Almost the same odds:

```
>> sum(Prob6(31:41))
ans = 0.1039
```

Almost the same - the difference comes from where you draw the line between 29 and 30