## ECE 341 - Homework \#8

Gamma, Poisson, \& Normal Distributions. Summer 2024

## Gamma Distributions

Let A be an exponential distribution with a mean of 30 seconds
The time until the next customer arrives
Let $B$ be the time until three customers arrive ( B has a gamma distribution)

1) Determine the pdf for $B$ using LaPlace transforms.

- From your results, determine the pdf at $\mathrm{B}=20$

$$
\begin{aligned}
& A=\left(\frac{1 / 30}{s+1 / 30}\right) \\
& B=\left(\frac{1 / 30}{s+1 / 30}\right)^{3}
\end{aligned}
$$

Use a table of LaPlace transforms

$$
\begin{gathered}
\quad t^{2} e^{-b t} u(t) \rightarrow\left(\frac{2}{(s+b)^{3}}\right) \\
\quad B=\left(\frac{(1 / 30)^{3}}{2}\right)\left(\frac{2}{(s+1 / 30)^{3}}\right) \\
\quad b(t)=\left(\frac{1}{2(30)^{3}}\right) t^{2} e^{-t / 30} u(t) \\
\text { At } \mathrm{t}=20 \\
b(20)=0.003803 \\
\gg 1 /(2 * 30 * 30 * 30) * t^{\wedge} 2 * \exp (-t / 30) \\
\text { ans }=0.003803089770612
\end{gathered}
$$

2) Determine the pdf of $B$ using convolution

- From your results, determine the pdf at $\mathrm{B}=20$

```
>> dt = 0.01;
>> t = [0:dt:500]';
>> A = 1/30 * exp(-t/30);
>> A2 = conv(A, A) * dt;
>> B = conv(A2,A) * dt;
>> B = B(1:length(t));
>> t(20/dt + 1)
ans = 20
>> B(20/dt + 1)
ans = 0.003808796306813
exact answer
ans = 0.003803089770612
```



## Poisson Distributions

3) Determine the probability that 2 customers will arrive within 60 seconds $(0<t<60)$

- Let A be an exponential distribution with a mean of 30 seconds The time until the next customer arrives

The probability that two customers arrive in 60 seconds:

Using moment generating functions

$$
\begin{aligned}
& p d f=\left(\frac{1 / 30}{s+1 / 30}\right)^{2} \\
& c d f=\left(\frac{1 / 30}{s+1 / 30}\right)^{2}\left(\frac{1}{s}\right) \\
& c d f=\left(\frac{1}{s}\right)+\left(\frac{A}{(s+1 / 30)^{2}}\right)+\left(\frac{B}{s+1 / 30}\right)
\end{aligned}
$$

$$
\left(\frac{1}{30}\right)^{2}=(s+1 / 30)^{2}+A \cdot(s)+B \cdot(s)(s+1 / 30)
$$

$$
\left(\frac{1}{30}\right)^{2}=s^{2}+\left(\frac{2}{30}\right) s+\left(\frac{1}{30}\right)^{2}+A s+B\left(s^{2}+\left(\frac{1}{30}\right) s\right)
$$

$$
B=-1
$$

$$
A=-1 / 30
$$

$$
c d f=\left(\frac{1}{s}\right)+\left(\frac{-1 / 30}{(s+1 / 30)^{2}}\right)+\left(\frac{-1}{s+1 / 30}\right)
$$

$$
c d f=\left(1-\left(\frac{1}{30}\right) t e^{-t / 30}-e^{-t / 30}\right) u(t)
$$

```
At \(t=60\)
    \(\gg t=60 ;\)
    >> 1 - 1/30*t*exp(-t/30) - \(\exp (-t / 30)\)
    ans \(=0.593994150290162\)
```

Using convolution

```
>> dt = 0.01;
>> t = [0:dt:500]';
>> A = 1/30 * exp(-t/30);
>> A2 = conv(A, A) * dt;
>> A2 = A2(1:length(t));
>> plot(t,A2)
>> sum(A2(1:6001)) * dt
ans =
    0.594327536187983
```

4) In D\&D, you do double damage (critical hit) if you roll a natural 20 on a 20 -sided die ( $p=5 \%$ ).

Using a binomial pdf, determine the probability of rolling a natural 20 three times in thirty rolls

$$
\begin{aligned}
& p(m)=\binom{n}{m} p^{m}(1-p)^{n-m} \\
& p(3)=\binom{30}{3}\left(\frac{1}{20}\right)^{3}\left(\frac{19}{20}\right)^{27} \\
& p(10)=0.1270
\end{aligned}
$$

Using a Poisson approximation, determine the probability rolling a natrual 20 three times in thirty rolls.

$$
\begin{aligned}
& \lambda=n p=(30)\left(\frac{1}{20}\right)=1.5 \\
& f(x)=\frac{1}{x!} \cdot \lambda^{x} \cdot e^{-\lambda} \\
& f(x=3)=\frac{1}{3!} \cdot(1.5)^{3} \cdot e^{-1.5} \\
& f(x=3)=0.12551
\end{aligned}
$$

## Normal Distribution

- Let $x$ be a random number from a normal distribution with a mean of 15 and a standard deviation of 5
- Let y be a random number from a normal distribution with a mean of 10 and a standard deviation of 6
- Let z be a random number from a normal distribution with a mean of 5 and a standard deviation of 7

5) Let $\mathrm{F}=\mathrm{x}+\mathrm{y}$. Determine the probability that $\mathrm{F}>30$
a) Using a z-score

$$
\begin{aligned}
& \mu_{f}=\mu_{x}+\mu_{y}=25 \\
& \sigma_{f}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}=5^{2}+6^{2}+61 \\
& \sigma_{f}=\sqrt{61}=7.801
\end{aligned}
$$

The z-score is

$$
z=\left(\frac{30-\mu}{\sigma}\right)=\left(\frac{30-25}{7.801}\right)=0.6402
$$

From a normal table (or StatTrek), this corresponds to a probability of 0.26102

## There is a $\mathbf{2 6 . 1 0 \%}$ chance the sum will be more than 30

b) Using a Monte-Carlo simulation with 100,000 samples of F

Matlab Code:

```
Wins = 0;
for i = 1:1e5
    x = randn*5 + 15;
    y = randn*6 + 10;
    f = x + y;
    if(f > 30)
        Wins = Wins + 1;
    end
end
p = Wins / le5
p = 0.2614
p = 0.2617
p = 0.2611
```

From a Monte Carlo simulation, $\mathrm{p}=26.1 \%$
6) Let $\mathrm{G}=\mathrm{x}+\mathrm{y}+\mathrm{z}$. Determine the probability that $\mathrm{G}>40$
a) Using a $z$-score

$$
\begin{aligned}
& \mu_{g}=\mu_{x}+\mu_{y}+\mu_{z}=30 \\
& \sigma_{g}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2} \\
& \sigma_{g}^{2}=5^{2}+6^{2}+7^{2}=110 \\
& \sigma_{g}=\sqrt{110}=10.4881
\end{aligned}
$$

The z -score for $\mathrm{G}>40$ is

$$
z=\left(\frac{40-\mu}{\sigma}\right)=0.9534
$$

From StatTrek, this corresponds to a probability of 0.17019
b) Using a Monte-Carlo simulation with 100,000 samples of $G$

Code:

```
Wins = 0;
for \(i=1: 1 e 5\)
    \(\mathrm{x}=\mathrm{randn}\) *5 + 15;
    \(y=r a n d n * 6+10 ;\)
    \(\mathrm{z}=\) randn*7 + 5;
    \(g=x+y+z ;\)
    if( \(g>40\) )
        Wins \(=\) Wins +1 ;
    end
end
\(\mathrm{p}=\) Wins / le5
\(p=0.1712\)
\(p=0.1693\)
\(p=0.1712\)
```

There is abou ta $17 \%$ chance the total will be more than 40

