ECE 341 - Homework \#7

Uniform and Exponential Distributions. Summer 2024

Uniform Distributions

Let

- a be a sample from A, a uniform distribution over the range of $(1,3)$
- b be a sample from B, a uniform distribution over the range of $(1,4)$

1) Determine the pdf for $\mathbf{y}=\mathbf{a}+\mathbf{b}$ using moment generating funcitons (i.e. LaPlace transforms)

$$
\begin{aligned}
& A=\frac{1}{2 s}\left(e^{-s}-e^{-3 s}\right) \\
& B=\frac{1}{3 s}\left(e^{-s}-e^{-4 s}\right) \\
& Y=A B=\left(\frac{1}{2 s}\left(e^{-s}-e^{-3 s}\right)\right)\left(\frac{1}{3 s}\left(e^{-s}-e^{-4 s}\right)\right) \\
& Y=\left(\frac{1}{6 s^{2}}\right)\left(e^{-2 s}-e^{-4 s}-e^{-5 s}+e^{-7 s}\right)
\end{aligned}
$$

Taking the inverse LaPlace transform

$$
y(x)=\left(\frac{1}{6}\right)((x-2) u(x-2)-(x-4) u(x-4)-(x-5) u(x-5)+(x-7) u(x-7))
$$

or, putting it another way

$$
y(x)=\left\{\begin{array}{cc}
0 & x<2 \\
\left(\frac{1}{6}\right)(x-2) & 2<x<4 \\
\left(\frac{2}{6}\right) & 4<x<5 \\
\left(\frac{1}{6}\right)(7-x) & 5<x<7 \\
0 & x>7
\end{array}\right.
$$

2) Determine the pdf for $\mathbf{a}+\mathbf{b}$ using convolution (by hand or Matlab)
```
>> dx = 0.01;
>> x = [0:dx:10]' + 1e-9;
>> A = 1/2 * (x>1).* (x<3);
>> B = 1/3 * (x>1).* (x<4);
>> y = conv(A,B) * dx;
>> y = y(1:length(x));
>> plot(x,y)
>> xlim([0,10])
>>
```


Same answer as problem \#1 but in a graph
3) Assume each resistor has a tolerance of 5% (i.e. a uniform distribution over the range of $(0.95,1.05)$ of the nominal value. For the following circuit, determine

- The voltage at Y as a funciton of $\{\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$, and R 4$\}$, and
- The mean and standard deviation for the voltage at Y using a Monte Carlo simulation.

Using voltage nodes:

$$
\begin{aligned}
& \mathrm{Vp}=\mathrm{Vm} \\
& \left(\frac{x-A}{R_{1}}\right)+\left(\frac{x}{R_{2}}\right)=0 \\
& \left(\frac{x-B}{R_{3}}\right)+\left(\frac{x-y}{R_{4}}\right)=0
\end{aligned}
$$

Solve for y :

$$
\begin{array}{ll}
R_{2}(x-A)+R_{1} x=0 & \\
R_{4}(x-B)+R_{3}(x-y)=0 & \\
\left(R_{1}+R_{2}\right) x=R_{2} A & *(\mathrm{R} 3+\mathrm{R} 4) \\
\left(R_{3}+R_{4}\right) x-R_{3} y=R_{4} B & *(\mathrm{R} 1+\mathrm{R} 2)
\end{array}
$$

Get x to drop out (gauss elimination)

$$
\begin{aligned}
& R_{3}\left(R_{1}+R_{2}\right) y=R_{2}\left(R_{3}+R_{4}\right) A-R_{4}\left(R_{1}+R_{2}\right) B \\
& Y=\left(\frac{R_{2}\left(R_{3}+R_{4}\right)}{R_{3}\left(R_{1}+R_{2}\right)}\right) A-\left(\frac{R_{4}\left(R_{1}+R_{2}\right)}{R_{3}\left(R_{1}+R_{2}\right)}\right) B \\
& Y=\left(\frac{R_{2}\left(R_{3}+R_{4}\right)}{R_{3}\left(R_{1}+R_{2}\right)}\right) A-\left(\frac{R_{4}}{R_{2}}\right) B
\end{aligned}
$$

Using superposition

$\mathrm{A}=0:$

$$
Y=-\left(\frac{R_{4}}{R_{3}}\right) B
$$

$B=0$:

$$
Y=\left(\frac{R_{3}+R_{4}}{R_{3}}\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right) A
$$

Total Answer:

$$
Y=\left(\frac{R_{3}+R_{4}}{R_{3}}\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right) A-\left(\frac{R_{4}}{R_{3}}\right) B
$$

(same as before)

Finding Y using a Monte Carlo simulation
Result

$$
\begin{aligned}
& x=4.0003 \\
& s=0.1730
\end{aligned}
$$

Matlab Code:

```
n = 1e3;
Y = zeros(n,1)
for i = 1:n
    R1 = (1 + 0.05*(rand*2-1)) * 1000;
    R2 = (1 + 0.05* (rand*2-1)) * 4000;
    R3 = (1 + 0.05*(rand*2-1)) * 1000;
    R4 = (1 + 0.05*(rand*2-1)) * 4000;
    A = 3;
    B = 2;
    Y(i) = (R3+R4)/R3 * R2/(R1+R2) * A - (R4/R3)*B;
end
X = mean(Y)
s = std(Y)
Y = sort(Y);
p = [1:n]' / n;
plot(Y,p)
xlabel('Volts');
```


cdf for y
(will be used when covering Weibull distributions)

Queueing Theory

Assume you are running a fast-food restraunt.

- The time between customers arriving at a restaraunt is an exponential distribution with a mean of 60 seconds.
- The time it takes to serve each customer is an exponential distribution with a mean of 30 seconds.

4) Run a single Monte-Carlo simulation for this restaraunt over the span of one hour.

- Give the formula for each column in you simulation
- What is the longest waiting time for a customer in your simulation?
- What is the largest queue over the span of one hour?

	Cust customer number	t (arr) customer arrival time b	t(order) time customer places order	$\begin{gathered} \mathrm{t}(\text { serve }) \\ \text { time to complete } \\ \text { order } \end{gathered}$	Tdone customer receives food	Twait time customer waits in line	Queue lendth of line when customer arrives
1	a	b	c	d	e	f	g
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0
10	1	49.9	49.9	10.38	60.29	0	0
11	2	69.32	69.32	1.91	71.23	0	0
12	3	151.47	151.47	6.2	157.67	0	0
13	4	174.66	174.66	26.44	201.1	0	0
14	5	220.35	220.35	8.42	228.77	0	0
15	6	222.36	228.77	6.05	234.82	6.41	1
16	7	244.1	244.1	2.83	246.93	0	0
17	8	274.91	274.91	37.17	312.08	0	0
18	9	286.68	312.08	0.41	312.49	25.4	1
19	10	328.44	328.44	42.03	370.47	0	0
20	11	334.24	370.47	3.3	373.77	36.24	1
21	12	347.08	373.77	1.27	375.05	26.69	2
22	13	391.34	391.34	19.15	410.49	0	0
:	:	:	:	:	:	:	:

```
b(10) = b(9) - 60*log(1-rand())
c(10) = max(b10,e9)
d(10) = -60*log(1-rand())
e(10) = c10 + d10
f(10) = c10 - b10
h(10) = = 1* (b10<e9) +1* (b10<e8) +1*(b10<e7) +1*(b10<e6) +1* (b10<e5) +1* (b10<e4)
```

Longest Wait $=36.24$ seconds, Longest Queue $=2$

