
ECE 341 - Homework #5

Geometric & Pascal Distributions.  Summer 2024

Geometric Distributions

Let A be the number of times you roll a 10-sided die until you get a 1 (p = 1/10)

1) Determine the pdf of A using z-transforms.  From this, compute 

The probabilty that A = 10

The probability that A >= 10
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Probability of k = 10

a(10) = 0.03874

Probability k >= 10

This is an infinite series.  Use Matlab to sum k=10 to 1000

>> k = [1:1000]';
>> A = (1/10) * (9/10) .^ (k-1);
>> A(10)

ans =    0.0387

>> sum(A(10:1000))

ans =    0.3874



2) Use a Monte-Carlo simulation with 100,000 A's.  From your Monte-Carlo simulation, determine

The probability that A = 10

The probability that A >= 10

Matlab Code

Result = zeros(200,1);
for n=1:1e5
    N = 1;
    while(rand > 1/10)
        N = N + 1;
    end
    Result(N) = Result(N) + 1;
end
 
Result(10)
 
ans =         3845

Calculated odds were 3874 in 100,000 (close to the Monte-Carlo results)

sum(Result(10:200))

ans =       38994

Calculated odds were 38,742 (close to the Monte-Carlo results)

Calculated Monte-Carlo #1 Monte-Carlo #2

p(A = 10) 3,874 3,845 3,897

p(A >= 10) 38,742 38,994 38,502



Pascal Distribution

Let

A be the number of times you roll an 10-sided die until you get a 1 (p = 1/10), and

B be the number of times you roll an 10-sided die until you get a 1 or 2 (p = 1/5).

X = A + B

3) Determine the pdf of X using z-transforms.  From this comptue

The probability that X = 20

The probability that X >= 20
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p(X = 20)

>> k = [1:1000]';
>> x = 0.2 * ( (0.9).^(k-1) - 0.8.^(k-1) );
>> x(20)

ans =    0.0241

p(X >= 20)

>> sum(x(20:1000))

ans =    0.2558

Check: total probability is one:

>> sum(x)

ans =     1



4)  Determine the pdf of X using convolution.  From this, compute

The probability that X = 20

The probability that X >= 20

>> k = [0:200]';
>> A = 1/10 * (9/10).^(k-1) .* (k>0);
>> B = 2/10 * (8/10).^(k-1) .* (k>0);
>> X = conv(A,B);

>> sum(X)

ans =    1.0000

This is a valid pdf:  sum of all probabilities is one

>> X(21)

ans =    0.0241

The probability that X = 20 is 0.0241 (same as z-transforms)

>> sum(X(21:400))

ans =    0.2558

The probability that X >= 20 is 25.58% (same as z-transforms)



5) Use a Monte-Carlo simulation with 100,000 X's.  From your Monte-Carlo simulation, determine

The probability that X = 20

The probability that X >= 20

Monte-Carlo Code:
Result = zeros(200,1);
for n=1:1e5
    A = 1;
    while(rand > 1/10)
        A = A + 1;
    end
    B = 1;
    while(rand > 2/10)
        B = B + 1;
    end
    X = A + B;
    Result(X) = Result(X) + 1;
end

Result(20)
 
sum(Result(20:200))

Calculated Monte-Carlo #1 Monte-Carlo #2

p(X = 20) 2,413 2,333 2,405

p(X >= 20) 25,576 25,342 25,694

( problem 6-8: over )



Pascal Distribution (cont'd)

Let

A be the number of times you roll a 10-sided die until you roll a 1 (p = 1/10)

B be the number of times you roll a 8-sided die until you get a 1 (p = 1/8)

C be the number of times you roll a 6-sided die until you get a 1 (p = 1/6)

Y = A + B + C

6) Determine the pdf of Y using z-transforms.  From this comptue

The probability that Y = 20

The probability that Y >= 20
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Probability that k = 20:

>> k = [1:1000]';
>> y = 1.25*(9/10).^(k-1) - 2*(7/8).^(k-1) + 0.75*(5/6).^(k-1);
>> sum(y)

ans =    1.0000

This is a valid pdf (probabilities all add to one)

>> y(20)

ans =    0.0341

>> sum(y(20:1000))

ans =    0.5639



7)  Determine the pdf of Y using convolution.  From this, compute

The probability that Y = 20

The probability that Y >= 20

>> k = [0:200]';
>> A = 1/10 * (9/10).^(k-1) .* (k>0);
>> B = 1/8 * (7/8).^(k-1) .* (k>0);
>> C = 1/6 * (5/6).^(k-1) .* (k>0);

>> AB = conv(A,B);
>> ABC = conv(AB,C);
>> ABC(21)

ans =    0.0341

>> sum(ABC(21:600))

ans =    0.5639

>> 

Same results as z-transform



8) Use a Monte-Carlo simulation with 100,000 Y's.  From your Monte-Carlo simulation, determine

The probability that Y = 20

The probability that Y >= 20

Matlab Code:

Result = zeros(200,1);
for n=1:1e5
    A = 1;
    while(rand > 1/10)
        A = A + 1;
    end
    B = 1;
    while(rand > 1/8)
        B = B + 1;
    end
    C = 1;
    while(rand > 1/6)
        C = C + 1;
    end
 
    X = A + B + C;
    Result(X) = Result(X) + 1;
end
 
Result(20)
 
sum(Result(20:200))

Calculated Monte-Carlo #1 Monte-Carlo #2

p(X = 20) 3,414 3,344 3,364

p(X >= 20) 56,389 56,289 56,493


