ECE 341 - Homework \#5

Geometric \& Pascal Distributions. Summer 2024

Geometric Distributions

Let A be the number of times you roll a 10 -sided die until you get a 1 ($p=1 / 10$)

1) Determine the pdf of A using z-transforms. From this, compute

- The probabilty that $\mathrm{A}=10$
- The probability that $\mathrm{A}>=10$

$$
\begin{aligned}
& A=\left(\frac{1 / 10}{z-9 / 10}\right) \\
& z A=\left(\frac{0.1 z}{z-0.9}\right) \\
& z a(k)=0.1 \cdot(0.9)^{k} u(k) \\
& a(k)=0.1(0.9)^{k-1} u(k-1)
\end{aligned}
$$

Probability of $\mathrm{k}=10$

$$
a(10)=0.03874
$$

Probability $\mathrm{k}>=10$
This is an infinite series. Use Matlab to sum $\mathrm{k}=10$ to 1000

```
>> k = [1:1000]';
>> A = (1/10) * (9/10) .^ (k-1);
>> A(10)
ans = 0.0387
>> sum(A(10:1000))
ans = 0.3874
```

2) Use a Monte-Carlo simulation with 100,000 A's. From your Monte-Carlo simulation, determine

- The probability that $\mathrm{A}=10$
- The probability that $\mathrm{A}>=10$

Matlab Code

```
Result = zeros(200,1);
for n=1:1e5
    N = 1;
    while(rand > 1/10)
            N = N + 1;
    end
    Result(N) = Result(N) + 1;
end
Result(10)
ans = 3845
```

Calculated odds were 3874 in 100,000 (close to the Monte-Carlo results)

```
sum(Result(10:200))
ans = 38994
```

Calculated odds were 38,742 (close to the Monte-Carlo results)

	Calculated	Monte-Carlo \#1	Monte-Carlo \#2
$p(\mathrm{~A}=10)$	3,874	3,845	3,897
$\mathrm{p}(\mathrm{A}>=10)$	38,742	38,994	38,502

Pascal Distribution

Let

- A be the number of times you roll an 10 -sided die until you get a $1(p=1 / 10)$, and
- B be the number of times you roll an 10 -sided die until you get a 1 or $2(p=1 / 5)$.
- $\mathrm{X}=\mathrm{A}+\mathrm{B}$

3) Determine the pdf of X using z-transforms. From this comptue

- The probability that $\mathrm{X}=20$
- The probability that $\mathrm{X}>=20$

$$
\begin{aligned}
& A=\left(\frac{1 / 10}{z-9 / 10}\right) \\
& B=\left(\frac{2 / 10}{z-8 / 10}\right) \\
& X=A B=\left(\frac{0.1}{z-0.9}\right)\left(\frac{0.2}{z-0.8}\right) \\
& z X=\left(\frac{0.02}{(z-0.9)(z-0.8)}\right) z \\
& z X=\left(\left(\frac{0.2}{z-0.9}\right)+\left(\frac{-0.2}{z-0.8}\right)\right) z \\
& z X=\left(\frac{0.2 z}{z-0.9}\right)+\left(\frac{-0.2 z}{z-0.8}\right) \\
& z x(k)=\left(0.2(0.9)^{k}-0.2(0.8)^{k}\right) u(k) \\
& x(k)=\left(0.2(0.9)^{k-1}-0.2(0.8)^{k-1}\right) u(k-1) \\
& \mathrm{p}(\mathrm{X}=20) \\
& \gg \mathrm{k}=[1: 1000] '^{\prime} ; \\
&\left.\gg x=0.2 \star(0.9) .^{\wedge}(\mathrm{k}-1)-0.8 . \wedge(\mathrm{k}-1)\right) ; \\
& \gg \mathrm{x}(20)
\end{aligned}
$$

$\mathrm{p}(\mathrm{X}>=20)$

```
    >> sum(x(20:1000))
    ans = 0.2558
```

Check: total probability is one:

```
>> sum(x)
ans = 1
```

4) Determine the pdf of X using convolution. From this, compute

- The probability that $X=20$
- The probability that $\mathrm{X}>=20$

```
>> k = [0:200]';
>> A = 1/10 * (9/10).^(k-1) .* (k>0);
>> B = 2/10 * (8/10).^(k-1) .* (k>0);
>> X = conv(A,B);
>> sum(X)
ans=1.0000
```

This is a valid pdf: sum of all probabilities is one

```
>> X(21)
ans=0.0241
```

The probability that $\mathrm{X}=20$ is 0.0241 (same as z-transforms)

```
>> sum(X(21:400))
ans = 0.2558
```

The probability that $\mathrm{X}>=20$ is 25.58% (same as z-transforms)
5) Use a Monte-Carlo simulation with $100,000 \mathrm{X}$'s. From your Monte-Carlo simulation, determine

- The probability that $\mathrm{X}=20$
- The probability that $\mathrm{X}>=20$

```
Monte-Carlo Code:
    Result = zeros(200,1);
    for n=1:1e5
        A = 1;
        while(rand > 1/10)
            A = A + 1;
        end
        B = 1;
        while(rand > 2/10)
            B = B + 1;
        end
        X = A + B;
        Result(X) = Result(X) + 1;
    end
    Result(20)
    sum(Result(20:200))
```

	Calculated	Monte-Carlo \#1	Monte-Carlo \#2
$p(X=20)$	2,413	2,333	2,405
$p(X>=20)$	25,576	25,342	25,694

(problem 6-8: over)

Pascal Distribution (cont'd)

Let

- A be the number of times you roll a 10 -sided die until you roll a $1(p=1 / 10)$
- B be the number of times you roll a 8 -sided die until you get a $1(p=1 / 8)$
- C be the number of times you roll a 6 -sided die until you get a $1(p=1 / 6)$
- $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$

6) Determine the pdf of Y using z-transforms. From this comptue

- The probability that $\mathrm{Y}=20$
- The probability that $\mathrm{Y}>=20$

$$
\begin{aligned}
& A=\left(\frac{1 / 10}{z-9 / 10}\right) \\
& B=\left(\frac{1 / 8}{z-7 / 8}\right) \\
& C=\left(\frac{1 / 6}{z-5 / 6}\right) \\
& Y=A B C=\left(\frac{1 / 10}{z-9 / 10}\right)\left(\frac{1 / 8}{z-7 / 8}\right)\left(\frac{1 / 6}{z-5 / 6}\right) \\
& z Y=A B C=\left(\frac{1 / 480}{(z-9 / 10)(z-7 / 8)(z-5 / 6)}\right) z \\
& z Y=\left(\left(\frac{1.25}{z-9 / 10}\right)+\left(\frac{-2}{z-7 / 8}\right)+\left(\frac{0.75}{z-5 / 6}\right)\right) z \\
& z y(k)=\left(1.25\left(\frac{9}{10}\right)^{k}-2\left(\frac{7}{8}\right)^{k}+0.75\left(\frac{5}{6}\right)^{k}\right) u(k) \\
& y(k)=\left(1.25\left(\frac{9}{10}\right)^{k-1}-2\left(\frac{7}{8}\right)^{k-1}+0.75\left(\frac{5}{6}\right)^{k-1}\right) u(k-1)
\end{aligned}
$$

Probability that $\mathrm{k}=20$:

```
>> k = [1:1000]';
>> y = 1.25*(9/10).^(k-1) - 2* (7/8).^(k-1) + 0.75*(5/6).^(k-1);
>> sum(y)
ans = 1.0000
```

This is a valid pdf (probabilities all add to one)

```
>> y(20)
ans = 0.0341
>> sum(y(20:1000))
ans = 0.5639
```

7) Determine the pdf of Y using convolution. From this, compute

- The probability that $\mathrm{Y}=20$
- The probability that $\mathrm{Y}>=20$

```
>> k = [0:200]';
>> A = 1/10 * (9/10).^(k-1) .* (k>0);
>> B = 1/8 * (7/8).^(k-1) .* (k>0);
>> C = 1/6 * (5/6).^(k-1) .* (k>0);
>> AB = conv(A,B);
>> ABC = conv(AB,C);
>> ABC(21)
ans = 0.0341
>> sum(ABC(21:600))
ans=0.5639
>>
```

Same results as z-transform
8) Use a Monte-Carlo simulation with 100,000 Y's. From your Monte-Carlo simulation, determine

- The probability that $\mathrm{Y}=20$
- The probability that $\mathrm{Y}>=20$

Matlab Code:

```
Result = zeros(200,1);
for n=1:1e5
    A = 1;
    while(rand > 1/10)
        A = A + 1;
    end
    B = 1;
    while(rand > 1/8)
        B = B + 1;
    end
    C = 1;
    while(rand > 1/6)
        C = C + 1;
    end
    X = A + B + C;
    Result(X) = Result(X) + 1;
end
Result(20)
sum(Result (20:200))
```

	Calculated	Monte-Carlo \#1	Monte-Carlo \#2
$p(X=20)$	3,414	3,344	3,364
$p(X>=20)$	56,389	56,289	56,493

