ECE 341 - Homework \#3

Dice Games and z-Transform - Summer 2023

Farkle (6 dice)

In the game of Farkle, you initially roll six dice

1) Compute using combinatorics the odds of rolling two tripples when rolling 6 dice one time
dice $=x x x$ yyy
$M=(6$ numbers choose 2$)(6$ spaces for x choose 3$)(3$ remain spaces for y, choose 3$)$

$$
\begin{aligned}
& M=\binom{6}{2}\binom{6}{3}\binom{3}{3} \\
& M=300
\end{aligned}
$$

this is the same result from an exhaustive search

$$
\begin{aligned}
& N=6^{6} \\
& p=\frac{M}{N}=0.006430
\end{aligned}
$$

2) Compute using combinatorics the odds of rolling two-pair when rolling 6 dice one time

$$
\text { dice }=x x \text { yy } a b
$$

$M=(6$ numbers choose 2 for $x y)(6$ spots for x choose 2$)(4$ spots for y choose 2$)(4 c 1$ for $a)(3 c 1$ for $b)$

$$
\begin{aligned}
& M=\binom{6}{2}\binom{6}{2}\binom{4}{2}\binom{4}{1}\binom{3}{1} \\
& M=16,200
\end{aligned}
$$

This is the same result as enumeration
3) Compute using combinatorics the odds of rolling three pairs when rolling 6 dice one time
dice = xx yy zz

From enumeration, $\mathrm{M}=1800$
$M=(6$ numbers choose 3 for $x y z)(6$ spots for x choose 2$)(4$ spots for y choose 2$)(2$ spots for z choose 2$)$

$$
\begin{aligned}
& M=\binom{6}{3}\binom{6}{2}\binom{4}{2}\binom{2}{2} \\
& M=1,800
\end{aligned}
$$

Same answer as enumeration
4) Write a Matlab program which computes the number of ways to roll six dice and

- Get two tripples
- Get two pair, and
- Get three pairs

Compare your answers to what you computed using combinatorics

$60 k$	$50 k$	$40 k$	$30 k$	Pair222	Pair42	Pair33	Pair22
6	180	1800	14400	1800	450	300	16200

Same answer as combinatorics
\% Farkle

```
Pair6 = 0;
Pair5 = 0;
Pair4 = 0;
Pair3 = 0;
Pair222 = 0;
Pair33 = 0;
Pair42 = 0;
Pair22 = 0
for d1 = 1:6
    for d2 = 1:6
            for d3 = 1:6
                    for d4 = 1:6
                        for d5 = 1:6
                                    for d6 = 1:6
                                    Dice = [d1,d2,d3,d4,d5,d6];
                                    Dice = sort(Dice);
    % check for pairs
                                    N = zeros(1,6);
                                    for i=1:6
                                    N(i) = sum(Dice == i);
                                    end
                                    [N,b] = sort(N, 'descend');
                                    if (N(1) == 6) Pair6 = Pair6 + 1;
                                    elseif (N(1) == 5) Pair5 = Pair5 + 1;
                                    elseif ((N(1)==4)*(N(2)==2)) Pair42 = Pair42 + 1;
                                    elseif (N(1)==4) Pair4 = Pair4 + 1;
                                    elseif ((N(1)==3)*(N(2)==3)) Pair33 = Pair33 + 1;
                                    elseif (N (1)==3) Pair3 = Pair3 + 1;
                                    elseif ((N (1)==2)*(N(2)==2)* (N (3)==2)) Pair222=Pair222+1;
                                    elseif ((N(1)==2)*(N(2)==2)*(N(3)<2)) Pair22 = Pair22+1;
                                    end
                                    end
                end
            end
            end
    end
end
```

[Pair6, Pair5, Pair4, Pair3,Pair222,Pair42,Pair33, Pair22]

z-Transforms

Find the inverse z-transform
5) $\quad X=\left(\frac{0.001 z(z+1)^{2}}{(z-0.99)(z-0.96)(z-0.95)}\right)$

Pull out a z

$$
X=\left(\frac{0.001(z+1)^{2}}{(z-0.99)(z-0.96)(z-0.95)}\right) z
$$

Do a partial fraction expansion

$$
X=\left(\left(\frac{3.3}{z-0.99}\right)+\left(\frac{-12.8053}{z-0.96}\right)+\left(\frac{9.5063}{z-0.95}\right)\right) z
$$

Distribute the z

$$
X=\left(\frac{3.3 z}{z-0.99}\right)+\left(\frac{-12.8053 z}{z-0.96}\right)+\left(\frac{9.5063 z}{z-0.95}\right)
$$

Take the inverse z-transform

$$
x(k)=\left(3.3(0.99)^{k}-12.8053(0.96)^{k}+9.5063(0.95)^{k}\right) u(k)
$$

6) $\quad X=\left(\frac{0.001 z(z+1)^{2}}{(z-1)(z-0.99)(z-0.96)}\right)$

Pull out a z

$$
X=\left(\frac{0.001(z+1)^{2}}{(z-1)(z-0.99)(z-0.96)}\right) z
$$

Do a partial fraction expansion

$$
X=\left(\left(\frac{10}{z-1}\right)+\left(\frac{-13.2}{z-0.99}\right)+\left(\frac{3.2}{z-0.96}\right)\right) z
$$

Distribute the z

$$
X=\left(\frac{10 z}{z-1}\right)+\left(\frac{-13.2 z}{z-0.99}\right)+\left(\frac{3.2 z}{z-0.96}\right)
$$

Take the inverse z transform

$$
x(k)=\left(10-13.2(0.99)^{k}+3.2(0.96)^{k}\right) u(k)
$$

7) A new Volkswagen ID. 4 costs $\$ 49,441$ from Cars.com. If you take out a 60 -month loan at 7.66% interest, what is your monthly payment? Solve using z-transforms.
Let $\mathrm{x}(\mathrm{k})$ be the amount you owe at month k
The loan value at the start of the next month is

- $\mathrm{p}=$ monthly payments starting at month \#1
- $\mathrm{L}=$ loan amount (lump sum at $\mathrm{k}=0$)

$$
x(k+1)=\left(1+\frac{0.0766}{12}\right) x(k)-p \cdot u(k-1)+L \cdot \delta(k)
$$

Take the z-transform

$$
\begin{aligned}
& z X=(1.006383) X-p\left(\frac{1}{z-1}\right)+L \\
& (z-1.006383) X=-p\left(\frac{1}{z-1}\right)+L \\
& X=-p\left(\frac{1}{(z-1)(z-1.006383)}\right)+L\left(\frac{1}{z-1.006383}\right)
\end{aligned}
$$

Do a patrial fraction expansion

$$
X=156.658 p\left(\frac{1}{z-1}-\frac{1}{z-1.006383}\right)+\left(\frac{L}{z-1.006383}\right)
$$

Multiply both sides by z

$$
z X=-156.658 p\left(\frac{z}{z-1.006383}-\frac{z}{z-1}\right)+L\left(\frac{z}{z-1.006383}\right)
$$

Take the inverse z transform

$$
z x(k)=\left(-156.658 p\left((1.006383)^{k}-1\right)+L(1.006383)^{k}\right) u(k)
$$

Divide by z (delay by one)

$$
x(k)=\left(-156.658 p\left((1.006383)^{k-1}-1\right)+L(1.006383)^{k-1}\right) u(k-1)
$$

After 60 payments, the loan is zero

$$
\begin{aligned}
& x(61)=0=-72.82478 p+1.464865 L \\
& p=\frac{1.465865}{72.82478} \cdot L \\
& p=\$ 994.50
\end{aligned}
$$

The payments are $\$ 994.50 /$ month for 60 months

