ECE 341 - Homework \#2

Combinatorics \& Card Games. Summer 2024

Combinatorics in Bridge

The card game bridge uses a 52-card deck. Each person is dealt 13 cards for their hand.
1a) How many different hands are possible? (order doesn't matter)

$$
N=\binom{52}{13}=635,013,559,600
$$

1b) What is the probability of having 6 cards of one suit in your hand?

$$
\begin{aligned}
& M=(4 \text { suits choose } 1)(13 \text { cards choose } 6)(39 \text { remaining cards choose } 7) \\
& M=\binom{4}{1}\binom{13}{6}\binom{39}{7}=105,574,751,568 \\
& p=\frac{M}{N}=\frac{\binom{4}{1}\binom{13}{6}\binom{39}{7}}{\binom{52}{13}}=0.166256
\end{aligned}
$$

There is a 16.6% chance of having six cards of one suit
(note: this includes the chance of two suits having 6 cards or a 6 -card suit and a 7 -card suit (the remainingn 7 cards can be anything)
2) What is the probability of having six face-cards (Jacks, Queens, Kings, or Aces)?

There are 16 face cards in the deck. The number of combinations that include six face-cards is

$$
M=(16 \text { face cards choose } 6)(36 \text { other chards choose } 7)
$$

$$
M=\binom{16}{6}\binom{36}{7}=66,848,221,440
$$

The odds are then

$$
p=\frac{M}{N}=\frac{\binom{16}{6}\binom{36}{7}}{\binom{52}{13}}=0.105271
$$

There is a $\mathbf{1 0 . 5 2 \%}$ chance of being dealt six face-cards
3) Check your answer using Matlab and a Monte-Carlo simulation with

- A 52-card deck
- 13-card hands, and
- 100,000 hands

Results:

$\begin{gathered} 6 \text { of suit } \\ 16388 \end{gathered}$	ce cards 628		
Elapsed time is 7.991061 seconds.			
		Calculated	Monte-Carlo
	6 of a suit	16,625	16,388
	6 face cards	10,527	10,628

Expected Results with 100,000 Hands

Matlab Code

```
% Bridge
tic
Face = 0;
Suit6 = 0;
for i0 = 1:1e5
    X = rand(1,52);
    [a,Deck] = sort(X);
    Hand = Deck(1:13);
    Value = mod(Hand-1,13) + 1;
    Suit = ceil(Hand/13);
% check for number of face cards7 of a suit
    N = zeros(1,4);
    for n=1:4
        N(n) = sum(Suit == n);
        end
    N = sort(N, 'descend');
    if(N(1) == 6)
        Suit6 = Suit6 + 1;
        end
% check for high-cards
    N = sum(Value == 1) + sum(Value > 10);
    if(N == 6)
        Face = Face + 1;
        end
    end
clc
disp(' 6 of suit 6 face cards')
disp([Suit6, Face])
toc
```


In 6-card poker, you're dealt 6 cards

4) Compute the odds of a full-house in 6-card poker using combinatorics.
note: your answer should match what you founding using enumeration.
hand $=(x x x y y a)$ or ($x x x y y)$
M1 = ($x \times x$ y a$)$
Since the frequency of each value is different, do each one separately:
$\mathrm{M} 1=(13$ values pick 1$)(4$ cards pick 3$)(12$ values pick 1$)(4$ cards pick 2$)(11$ values pick 1$)$
$M_{1}=\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}\binom{11}{1}\binom{4}{1}$
$M_{1}=164,736$

Since the frequency is the same for both variables, do them together

$$
\begin{aligned}
& \mathrm{M} 2=(13 \text { choose } 2 \text { for } \mathrm{xy})(4 \text { choose } 3 \text { for } \mathrm{x})(4 \text { choose } 3 \text { for } \mathrm{y}) \\
& M_{2}=\binom{13}{2}\binom{4}{3}\binom{4}{3} \\
& M_{2}=1248
\end{aligned}
$$

The total is then

$$
M=M_{1}+M_{2}=165,984
$$

The number of hands is

$$
N=\binom{52}{6}=20,358,520
$$

This is the same answer we got in homework \#1 using enumeration

```
Hands
20358520
Full-House (-of-a-kind
```

5) Compute the odds being three of a kind using combinatorics
again, your answer should match what you founding using enumeration.
hand $=\mathrm{xxxabc}$
$M=(13$ values choose 1 for x$)(4$ cards choose 3$)(12$ values pick 3 for abc)(4 choose 1 for $a)(4 \mathrm{c} 1)(4 \mathrm{c} 1)$

$$
\begin{aligned}
& M=\binom{13}{1}\binom{4}{3}\binom{12}{3}\binom{4}{1}\binom{4}{1}\binom{4}{1} \\
& M=732,160
\end{aligned}
$$

This is the same answer we got using enumeration

```
Hands
20358520
\[
\begin{array}{cr}
\text { Full-House } & 3-o f-a-k i n d \\
165984 & 732160
\end{array}
\]
```

6) Determine the odds of a full-house and three-of-a-kind using Matlab and a Monte-Carlo simulation and 100,000 hands of 6-card poker

Result with 100,000 hands:

	Enumeration	Calculated	Monte-Carlo
Full-House	815.30	815.30	876
3-of-a-kind 7	3596.33	3596.33	3,640

Expected Results with 100,000 Hands

Code:

```
% 6-Card Stud
tic
Pair32 = 0;
Pair3 = 0;
for i0 = 1:1e5
    X = rand(1,52);
    [a,Deck] = sort(X);
    Hand = Deck(1:6);
    Value = mod((Hand-1),13) + 1;
    Suit = ceil(Hand/13);
    N = zeros(1,13);
    for n=1:13
        N(n) = sum(Value == n);
        end
        [N,a] = sort(N, 'descend');
    if ((N(1) == 3)*(N(2) >= 2)) Pair32 = Pair32 + 1; end
    if ((N(1) == 3)*(N(2) < 2)) Pair3 = Pair3 + 1; end
end
clc
disp(' Full-House 3-of-a-kind');
disp([Pair32, Pair3]);
toc
```


Conditional Probability in 6-Card Poker

7) Compute the probability of getting a full-house if there is a single draw step

- If you are dealt 3-of-a-kind, draw 3 cards
- If you are dealt 2-pair, draw 2 cards
- If you are dealt 1-pair, draw 4 cards
- If you are dealt no pairs, draw 5 cards.
hand $=\mathrm{xxx}$ abc discard abc, draw 3
hand $=x x$ yy ab discard $a b$, draw 2
hand $=x x$ abcd discard abcd, draw 4
hand $=$ abcdef discard abcde, draw 5

Note: This is actually a really hard problem since when you discard a two, there are fewer 2 's left in the deck to pair up.

Assume that instead of discarding cards, they're shuffled back into the deck. The answer will be slightly high - but should be close.

Dealt 3 of a kind: $\mathbf{p}(\mathrm{A} \mid \mathrm{B})$

Ways to get to a full-house: Draw three cards

$$
\begin{aligned}
& \begin{array}{l}
y y y+y y a \\
M=(12 \mathrm{c} 1 \text { for } \mathrm{y})(4 \mathrm{c} 3 \text { cards })+(12 \mathrm{c} 1 \text { for } \mathrm{y})(4 \mathrm{c} 2 \text { cards })(11 \mathrm{c} 1 \text { for } \mathrm{a})(4 \mathrm{c} 1 \text { card for } \mathrm{a}) \\
M=\binom{12}{1}\binom{4}{3}+\binom{12}{1}\binom{4}{2}\binom{11}{1}\binom{4}{1} \\
M=3,216 \\
N=\binom{49}{3}=18,240 \quad \text { assuming shuffle cards back into the deck } \\
p(A \mid B)=\frac{3216}{18240}=0.176316 \quad \\
p(B)=0.035963 \\
p(A)=p(A \mid B) p(B)=0.006341
\end{array}
\end{aligned}
$$

634.1 in 100,000 hands

Dealt 2-Pair: (xx yy ab)

Ways to get to a full-house with drawing two cards

$$
\begin{aligned}
& \mathrm{xy}+\mathrm{xc}+\mathrm{yc} \\
& \mathrm{M}=(2 \mathrm{c} 1 \text { for } \mathrm{x})(2 \mathrm{c} 1 \text { for } \mathrm{y})+(2 \mathrm{c} 1 \text { for } \mathrm{x})(44 \mathrm{c} 1 \text { for } \mathrm{c})+(2 \mathrm{c} 1 \text { for } \mathrm{y})(44 \mathrm{c} 1 \text { for } \mathrm{c}) \\
& M=\binom{2}{1}\binom{2}{1}+\binom{2}{1}\binom{44}{1}+\binom{2}{1}\binom{44}{1} \\
& M=180 \\
& N=\binom{48}{2}=1128 \quad \text { assuming cards are shuffled back into the deck } \\
& p(A \mid B)=\frac{M}{N}=\frac{180}{1128}=0.159574
\end{aligned}
$$

$N(B)=x x y y a b+x x y y a a$
$(13 \mathrm{c} 2$ for xy$)(4 \mathrm{c} 2$ for x$)(4 \mathrm{c} 2$ for y$)(11 \mathrm{c} 2$ for ab$)(4 \mathrm{c} 1$ for a$)(4 \mathrm{c} 1$ for b$)$
$p(B)=\frac{\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{11}{2}\binom{4}{1}\binom{4}{1}+\binom{13}{3}\binom{4}{2}\binom{4}{2}\binom{4}{2}}{\binom{52}{6}}$
$p(B)=0.12441$
$p(A)=p(A \mid B) p(B)=0.019853$
1985.3 in 100,000 hands

Dealt 1-pair (xx bcde)

Draw four cards

$$
x \text { yyy + x yy a + yyy a }
$$

$(2 \mathrm{c} 1$ for x$)(12 \mathrm{c} 1$ for y$)(4 \mathrm{c} 3)+(2 \mathrm{c} 1$ for x$)(12 \mathrm{c} 1$ for y$)(4 \mathrm{c} 2)(44 \mathrm{c} 1$ for a$)+(12 \mathrm{c} 1$ for y$)(4 \mathrm{c} 3)(44 \mathrm{c} 1$ for a$)$

$$
\begin{aligned}
& M=\binom{2}{1}\binom{12}{1}\binom{4}{3}+\binom{2}{1}\binom{12}{1}\binom{4}{2}\binom{44}{1}+\binom{12}{1}\binom{4}{3}\binom{44}{1} \\
& M=8544 \\
& N=\binom{50}{4}=230,300 \\
& p(A \mid B)=\frac{M}{N}=0.037099
\end{aligned}
$$

p (1 pair)
$N(B)=(13$ choose 1 for $a)(4$ choose 2$)(12$ choose 4 for bcde $)(4 c 1)(4 c 1)(4 c 1)(4 c 1)$
$p(B)=\frac{\binom{13}{1}\binom{4}{2}\binom{12}{4}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}}{\binom{52}{6}}$

$$
p(B)=0.485505
$$

p (A)

$$
\begin{aligned}
& p(A)=p(A \mid B) p(B) \\
& p(A)=0.018012
\end{aligned}
$$

1801.2 in 100,000 hands

High Card: About the same as drawing a full house

$$
p(A \mid B) \approx 0.008153
$$

p(no pairs)

$$
\begin{aligned}
& \mathrm{N}=(13 \text { choose } 6)(4 \mathrm{c} 1)(4 \mathrm{c} 1)(4 \mathrm{c} 1)(4 \mathrm{c} 1)(4 \mathrm{c} 1)(4 \mathrm{c} 1) \\
& p(B)=\frac{\binom{13}{6}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}}{\binom{52}{6}} \\
& p(B)=0.345284 \\
& p(A \mid B) p(B)=0.002815
\end{aligned}
$$

281.5 hands out of 100,000

Adding them all together....

Dealt Hand	calculated	Mont-Carlo (a)	Monte-Carlo (b)	Mont-Carlo (c)
full-house	815.3	811.1	809.1	805.3
3 of a kind	634.1	629.9	625.5	636.7
2 pair	1985.3	2068.3	2079.7	2096.8
pair	1801.2	1892.5	1863.4	1876.1
high card	281.5	306.4	311.1	312.8
Total	5517.4	5708.2	5688.8	5727.7

Calculated \& Monte-Carlo: Number of hands out of 100,000 resulting in a full-house in 6 -card draw poker (Monte Carlo simulation actually used 1,000,000 hands)

The odds are fairly close - calculations are a little off due to assuming discards are shuffled back into the deck (wrong but simplifies calculations and is almost correct).
8) Check your answers using a Monte Carlo simulation with 100,000 hands of 6 -card draw poker
see table in problem \#7
note: In my Monte-Carlo program, I kept track of which path was taken to get to a full-house so I could check my calculations for each type of hand dealt.

