ECE 341 - Homework \#1

Tree Diagrams and Enumeration. Summer 2024

1) Two teams, A and B, are playing a best of 5 game series.

- The series is over once one team wins 3 games.
- B starts with +1 points (odds)

Draw the tree diagram for all possible outcomes of the series.

2) List all possible combinations of rolling a 4 -sided die and a 6 -sided die.

- Also determine the probability of $\mathrm{X}\{0 . .5\}$ where X is the difference of the die rolls.

	1	2	3	4	5	6
1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=2$	$\mathrm{x}=3$	$\mathrm{x}=4$	$\mathrm{x}=5$
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=2$	$\mathrm{x}=3$	$\mathrm{x}=4$
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
	$\mathrm{x}=2$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=2$	$\mathrm{x}=3$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
	$\mathrm{x}=3$	$\mathrm{x}=2$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=2$

The number of results for x is:

- 0: 4 times
- 1: 7 times
- 2: 6 times
- 3: 4 times
- 4: 2 times
- 5: 1 time

The odds for the difference is then

- 0: 4/24
- 1: $7 / 24$
- 2: 6/24
- 3: $4 / 24$
- 4: $2 / 24$
- 5: $1 / 24$

Two players, A and B, are playing a game of dice.

- Player A rolls a 4 -sided die and a 6 -sided die and takes the difference (i.e. problem \#2)
- Player B rolls a 6 -sided die and subtracts one.

Player A wins on ties.
The odds for the difference is then

- $\mathrm{A}=0$: $4 / 24$
- $\mathrm{A}=1: \quad 7 / 24$
- $\mathrm{A}=2$: $6 / 24$
- $\mathrm{A}=3$: $4 / 24$
- $\mathrm{A}=4: 2 / 24$
- $\mathrm{A}=5$: $1 / 24$

3) What is the conditional probability

- Player A wins given B's score is 3 (B rolled a 4)

In order to win, A has to score 3,4 , or 5

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~A}=3)=4 / 24 \\
& \mathrm{p}(\mathrm{~A}=4)=2 / 24 \\
& \mathrm{p}(\mathrm{~A}=5)=1 / 24
\end{aligned}
$$

The total is

$$
\mathrm{p}(\mathrm{~A}=\{3,4,5\})=7 / 24
$$

Player A has a 7/24 chance of winning given that B scored 3 points.
4) What is the probability that player A will win any given game?

The odds for the difference is then

- $\mathrm{A}=0$: $4 / 24$
- $\mathrm{A}=1: \mathrm{F} / 24$
- $\mathrm{A}=2$: $6 / 24$
- A=3: $4 / 24$
- $\mathrm{A}=4$: $2 / 24$
- $\mathrm{A}=5$: $1 / 24$

This is a conditional probability

$$
p(A)=p(A \mid B=0) p(B=0)+p(A \mid B=1) p(B=1)+p(A \mid B=2) p(B=2)+p(A \mid B=3) p(B=3)+p(A \mid B=4) p(B=4)+p(A \mid B=5) p(B=5)
$$

Doing each part

$$
\begin{aligned}
& \mathrm{p}(\mathrm{AlB}=0) \mathrm{p}(\mathrm{~B}=0): \\
&=(1)^{*}(1 / 6) \\
& \mathrm{p}(\mathrm{AlB}=1) \mathrm{p}(\mathrm{~B}=1) \\
&= \mathrm{p}(\mathrm{~A}=\{1,2,3,4,5\}) \mathrm{p}(\mathrm{~B}=1) \\
&=(20 / 24) *(1 / 6) \\
& \mathrm{p}(\mathrm{AlB}=2) \mathrm{p}(\mathrm{~B}=2) \\
&= \mathrm{p}(\mathrm{~A}=\{2,3,4,5\}) \mathrm{p}(\mathrm{~B}=2) \\
&=(13 / 24) *(1 / 6)
\end{aligned}
$$

$\mathrm{p}(\mathrm{AlB}=3) \mathrm{p}(\mathrm{B}=3)$

$$
=p(A=\{3,4,5\}) p(B=3)
$$

$$
=(7 / 24) *(1 / 6)
$$

$p(A \mid B=4) p(B=4)$

$$
=p(A=\{4,5\}) * p(B=4)
$$

$$
=(3 / 24) *(1 / 6)
$$

$\mathrm{p}(\mathrm{AlB}=5) \mathrm{p}(\mathrm{B}=5)$

$$
=\mathrm{p}(\mathrm{~A}=5) * \mathrm{p}(\mathrm{~B}=5)
$$

$$
=(1 / 24) *(1 / 6)
$$

Adding them all up

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~A})=68 / 144 \\
& \mathrm{p}(\mathrm{~A})=0.4722
\end{aligned}
$$

A has a 30.55% chance of winning any given game

Enumeration \& Farkle

Write a Matlab program to go through every combination of 6d6 and determine...
5) The odds of rolling two tripples
dice $=x x x$ yyy
x , y different values

Odds are 300 / 46,656
6) The odds of rolling two pair

$$
\text { dice }=x x \text { yy ab } \quad x, y, a, b \text { different }
$$

Odds are 16,200 / 46,656
matlab Code:

```
% Farkle
Pair33 = 0;
Pair22 = 0
for d1 = 1:6
    for d2 = 1:6
        for d3 = 1:6
                for d4 = 1:6
                for d5 = 1:6
                                    for d6 = 1:6
                                    Dice = [d1,d2,d3,d4,d5,d6];
                                    Dice = sort(Dice);
    % check for pairs
        N = zeros(1,6);
                                for i=1:6
                                N(i) = sum(Dice == i);
    end
                            [N,b] = sort(N, 'descend');
                            if (N(1) == 6) Pair6 = Pair6 + 1;
                                    elseif (N(1) == 5) Pair5 = Pair5 + 1;
                                    elseif ((N(1)==4)*(N(2)==2)) Pair42 = Pair42 + 1;
                                    elseif (N(1)==4) Pair4 = Pair4 + 1;
                                    elseif ((N(1)==3)*(N(2)==3)) Pair33 = Pair33 + 1;
                                    elseif (N(1)==3) Pair3 = Pair3 + 1;
                                    elseif ((N(1)==2)*(N(2)==2)* (N(3)==2)) Pair222=Pair222+1;
                                    elseif ((N(1)==2)*(N(2)==2)*(N(3)<2)) Pair22 = Pair22+1;
                                    end
                                    end
                end
                end
            end
        end
end
```

[Pair33, Pair22]

Enumeration in 6-card Poker

warning: Enumeration took 31 minutes to run on my computer....
7) In 6 -card poker, you're dealt 6 cards and keep the best 5 . Determine using enumeration the odds of being dealt a full-house

$$
\text { hand }=(x x x \text { yy a }) \text { or }(x x x \text { yyy }) \quad x, y, \text { a different values }
$$

The probability of a full-house is $\mathbf{0 . 0 0 8 1 5 3 0 4}$

122.65 : 1 against
8) Determine using enumeration the odds of being dealt three of a kind
hand $=x x x a b c$
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}$ different values

The probability of a 3-of-a-kind is $\mathbf{0 . 0 3 5 9 6 3 3 2 1 4 9 8 8 1 2}$
27.806 : 1 against

Matlab Results:

```
ans =
    Hands Full-House 3-of-a-kind
    20358520 165984 732160
Elapsed time is 3354.129381 seconds.
>>
>> format long
>> Pair32 / H
ans =
    0.008153048453424
>> Pair3 / H
ans =
    0.035963321498812
```


Code:

```
% 6-Card Stud
% Probability of 2-pair & 2 of a kind
tic
Pair32 = 0; % full-house
Pair3 = 0; % 3 of a kind
H = 0; % total number of hands
for c1=1:47
    for c2 = c1+1:48
        for c3 = c2+1:49
            clc
            disp([c1,c2, c3])
            for c4 = c3+1:50
                for c5 = c4+1:51
                        for c6 = c5+1:52
                            H = H + 1
                            Hand = [c1,c2,c3,c4, c5,c6];
                        Value = mod(Hand,13) + 1;
                            Suit = floor(Hand/13) + 1;
                            N = zeros(1,13);
                    for n=1:13
                    N(n) = sum(Value == n);
                    end
                        [N,a] = sort(N, 'descend');
                            if ((N(1) == 3)*(N(2) >= 2)) Pair32 = Pair32 + 1; end
                            if ((N(1) == 3)*(N(2) == 1)) Pair3 = Pair3 + 1; end
                                end
                end
                end
            end
    end
end
[H, Pair32, Pair3]
toc
```

