
 ECE 111 - Homework #3
Math 105: Trigonometry.

Due Monday, February 3rd. Please submit via email or on BlackBoard

Polar to Rectangular Conversions

1) Determine the final position of A: (x,y)

A = (6∠ − 930) + (11∠700) + (8∠870)

In Matlab

>> x1 = 6*cos(-93*pi/180)
x1 = -0.3140

>> y1 = 6*sin(-93*pi/180)
y1 = -5.9918

>> x2 = 11*cos(70*pi/180)
x2 = 3.7622

>> y2 = 11*sin(70*pi/180)
y2 = 10.3366

>> x3 = 8*cos(87*pi/180)
x3 = 0.4187

>> y3 = 8*sin(87*pi/180)
y3 = 7.9890

>> Ax = x1 + x2 + x3

Ax = 3.8669

>> Ay = y1 + y1 + y3

Ay = -3.9945

On an HP Prime

 Setting - Entry - RPN

6 angle -93
enter
11 angle 70
+
8 angle 87
+
angle

2) Determine final position of B: (x,y)

B = (5∠ − 220) + (22∠310) + (20∠ − 660)

In Matlab

>> x1 = 5 * cos(-22*pi/180)
x1 = 4.6359

>> y1 = 5*sin(-22*pi/180)
y1 = -1.8730

>> x = 22*cos(31*pi/180)
x = 18.8577

>> x2 = 22*cos(31*pi/180)
x2 = 18.8577

>> y2 = 22*sin(31*pi/180)
y2 = 11.3308

>> x3 = 20*cos(-66*pi/180)
x3 = 8.1347

>> y3 = 20*sin(-66*pi/180)
y3 = -18.2709

>> Bx = x1 + x2 + x3

Bx = 31.6283

>> By = y1 + y2 + y3

By = -8.8131

>>

On an HP-Prime calculator

5 angle -22
enter
22 angle 31
+
20 angle -66
+
angle

3) Where is B relative to A (i.e. what is C = B - A?)

In (x,y) coordinates

In polar coordinates

In Matlab

>> Cx = Bx - Ax

Cx = 27.7614

>> Cy = By - Ay

Cy = -4.8186

>> Cr = sqrt(Cx^2 + Cy^2)

Cr = 28.1765

>> Cq = atan2(Cy, Cx) * 180/pi

Cq = -9.8468 (degrees)

>>

Plotting Polar Functions

4) Plot the following functions in Matlab for −2π < θ < 2π

Note: plot() plots in cartesian coordinates. Each function needs to be converted from polar to

rectangular.

a) r = 2 sin (θ) + 3 cos (θ)

Matlab Script & Figure:

not surprisingly, this plots as a circle. Trig functions are all about circles.

b) r = (2π − θ)(2π + θ)

sort of a heart - happy Valentine's day!

c) r = θ2

another variation of a heart

Robot Tip Position (Forward Kinematics)

A 2D robot has three arms with lengths of {3.0, 2.0, 1.0} meters. The final tip positionis

x1 = 3 cos (θ1) y1 = 3 sin (θ1)

x2 = x1 + 2 cos (θ1 + θ2) y2 = y1 + 2 sin (θ1 + θ2)

x3 = x2 + cos (θ1 + θ2 + θ3) y3 = y2 + sin (θ1 + θ2 + θ3)

5) Plot the tip position (x3, y3) for

 θ1 = 410 θ2 = −940 θ3 = −450

Matlab program:

Pass the angles in degrees

Return the tip position (x3, y3)

Just for fun, also plot the position of the robot (not required but fun to see)

File RRR.m

function [x3, y3] = RRR(q1, q2, q3)

 % convert to radians
 q1 = q1 * pi / 180;
 q2 = q2 * pi / 180;
 q3 = q3 * pi / 180;

 % compute the joint positions
 x0 = 0;
 y0 = 0;

 x1 = x0 + 3*cos(q1);
 y1 = y0 + 3*sin(q1);

 x2 = x1 + 2*cos(q1+q2);
 y2 = y1 + 2*sin(q1+q2);

 x3 = x2 + 1*cos(q1+q2+q3);
 y3 = y2 + 1*sin(q1+q2+q3);

 % just for fun, plot the resulting robot position
 plot([x0,x1,x2,x3],[y0,y1,y2,y3],'b.-');
 ylim([-1,4]);
 xlim([-1,4]);
 pause(0.01);

 end

From the command window, call the subroutine

>>> [x3, y3] = RRR(41, -94, -45)

x3 = 3.3286

y3 = -0.6194

Tip Position

 3.3286 -0.6194

6) Plot the tip position (x3, y3) for

 θ1 = −910 θ2 = −810 θ3 = 650

>> [x3, y3] = RRR(-91, -81, 65)

x3 = -2.3253

y3 = -4.2342

Robot Tip Position (Inverse Kinematics & fminsearch())

7) Write a Matlab function which

Is passed the angles ,(θ1, θ2, θ3)
Computes the tip position, and

Returns the distance from the tip position and point (x = 2.0, y = 0.0)

Comment: Part of the power of Matlab is once you write a function, that function becomes part of the

Matlab library of functions you can use. That lets you build up a rather powerful set of instructions.

For example, use the previous function from problem #5 (RRR.m) to create a new function; RRR_Cost

Matlab Function: RRR_Cost.m

uses RRR.m (problem #5)

function [J] = RRR_Cost(z)

 q1 = z(1);
 q2 = z(2);
 q3 = z(3);

 [x3, y3] = RRR(q1, q2, q3);

 J = sqrt((x3-2)^2 + (y3-0)^2);

 end

Checking: The tip is 1.4659 meters from the point (2,0)

>> J = RRR_Cost([41, -94, -45])

J = 1.4659

8) Use the fminsearch() to determine the joint angles which place the robot at (x3 = 2.0, y3 = 1.0)

From the command window:

>> [Q,e] = fminsearch('RRR_Cost', [41, -95, -45])

Q = 68.5320 -132.1667 -25.5707

e = 8.5387e-008

One solution is

q1 = 68.5320 degrees

q2 = -132.1667 degrees

q3 = -25.5707 degrees

This solution isn't unique. With 3 degrees of freedom and two constraints, there are an infinite number of

solutions. Change the initial guess and you converge to another valid solution

>> [Q,e] = fminsearch('RRR_Cost', [21, -195, -85])

Q = 7.4057 -153.5350 -167.1550

e = 3.7470e-009

