LaGrangian Formulation of System Dynamics

Find the dynamics of a nonlinear system:

Circuit analysis tools work for simple lumped systems. For more complex systems, especially nonlinear ones, this approach fails. The Lagrangian formulation for system dynamics is a way to deal with any system.

Definitions:

KE Kinetic Energy in the system
PE Potential Energy
$\frac{\partial}{\partial t}$ The partial derivative with respect to 't'. All other variables are treated as constants.
$\frac{d}{d t} \quad$ The full derivative with respect to t .

$$
\frac{d}{d t}=\frac{\partial}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial}{\partial z} \frac{\partial z}{\partial t}+\ldots
$$

L Lagrangian $=$ KE -PE

Procedure:

1) Define the kinetic and potential energy in the system.
2) Form the Lagrangian:

$$
L=K E-P E
$$

3) The input is then

$$
F_{i}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{i}}\right)-\frac{\partial L}{\partial x_{i}}
$$

where F_{i} is the input to state x_{i}. Note that

- If x_{i} is a position, F_{i} is a force.
- If x_{i} is an angle, F_{i} is a torque

Example:

Example: Determine the dynamics of a rocket
Step 1: Determine the potential and kinetic energy of the rocket
Potential Energy

$$
P E=m g x
$$

Kinetic Energy:

$$
K E=\frac{1}{2} m \dot{x}^{2}
$$

Step 2: Set up the LaGrangian

$$
\begin{aligned}
& L=K E-P E \\
& L=\frac{1}{2} m \dot{x}^{2}-m g x
\end{aligned}
$$

Step 3: Take the partials

$$
\begin{aligned}
& F=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\left(\frac{\partial L}{\partial x}\right) \\
& F=\frac{d}{d t}(m \dot{x})-(-m g)
\end{aligned}
$$

Take the full derivative with respect to t

$$
F=m \ddot{x}+\dot{m} \dot{x}+m g
$$

Note that if the rocket is loosing mass you get the term $\dot{m} \dot{x}$. If you leave this term out, the rocket misses the target.

Example 2: Ball in a parabolic bowl

Determine the dynamics of a ball rolling in a bowl characterized by

$$
y=\frac{1}{2} x^{2}
$$

Step 1: Define the kinetic and potential energy
Potential Energy:

$$
P E=m g y=\frac{1}{2} m g x^{2}
$$

Kinetic Energy: This has two terms, one for translation and one for rotation .

$$
K E=\frac{1}{2} m v^{2}+\frac{1}{2} j \dot{\theta}^{2}
$$

The velocity is

$$
v=\sqrt{\dot{x}^{2}+\dot{y}^{2}}
$$

The rotational velocity is

$$
\begin{aligned}
& \text { position }=r \theta \\
& v=r \dot{\theta}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& y=\frac{1}{2} x^{2} \\
& \dot{y}=x \dot{x}
\end{aligned}
$$

gives

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2}+\frac{1}{2} J\left(\frac{v}{r}\right)^{2} \\
& K E=\frac{1}{2}\left(m+\frac{J}{r^{2}}\right) v^{2} \\
& K E=\frac{1}{2}\left(m+\frac{J}{r^{2}}\right)\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
& K E=\frac{1}{2}\left(m+\frac{J}{r^{2}}\right)\left(\dot{x}^{2}+(x \dot{x})^{2}\right)
\end{aligned}
$$

The inertia depends upon what type of ball you are using:

$$
\begin{array}{ll}
J=0 & \text { point mass with all the mass in the center } \\
J=\frac{2}{5} m r^{2} & \text { solid sphere } \\
J=\frac{2}{3} m r^{2} & \text { hollow sphere } \\
J=m r^{2} & \text { hollow cyllinder }
\end{array}
$$

Assume the ball is a solid sphere

$$
\begin{aligned}
& K E=\frac{1}{2}\left(m+\frac{\frac{2}{5} m r^{2}}{r^{2}}\right)\left(\dot{x}^{2}+(x \dot{x})^{2}\right) \\
& K E=0.7 m\left(1^{2}+x^{2}\right) \dot{x}^{2}
\end{aligned}
$$

Step 2: Form the LaGrangian

$$
\begin{aligned}
& L=K E-P E \\
& L=0.7 m\left(1^{2}+x^{2}\right) \dot{x}^{2}-\frac{1}{2} m g x^{2}
\end{aligned}
$$

Step 3: Take the partials. The partial with respect to x is:

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=0.7 m(2 x) \dot{X}^{2}-m g x \\
& \frac{\partial L}{\partial x}=1.4 m x \dot{x}^{2}-m g x
\end{aligned}
$$

The partial with respect to $\mathrm{dx} / \mathrm{dt}$ is:

$$
\frac{\partial L}{\partial \dot{x}}=1.4 m\left(1^{2}+x^{2}\right) \dot{x}
$$

The full derivative of the partial with respect to $\mathrm{dx} / \mathrm{dt}$ is

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{d}{d t}\left(1.4 m\left(1^{2}+x^{2}\right) \dot{x}\right) \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=1.4 m(2 x \dot{x}) \dot{x}+1.4 m\left(1^{2}+x^{2}\right) \ddot{x} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=2.8 m x \dot{x}^{2}+1.4 m\left(1^{2}+x^{2}\right) \ddot{x}
\end{aligned}
$$

So, the dynamics are:

$$
\begin{aligned}
& F=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\left(\frac{\partial L}{\partial x}\right) \\
& F=\left(2.8 m x \dot{x}^{2}+1.4 m\left(1^{2}+x^{2}\right) \ddot{x}\right)-\left(1.4 m x \dot{x}^{2}-m g x\right) \\
& F=1.4 m x \dot{x}^{2}+1.4 m\left(1^{2}+x^{2}\right) \ddot{x}+m g x
\end{aligned}
$$

In free fall, $\mathrm{F}=0$. Solving for the highest derrivative:

$$
\ddot{x}=-\left(\frac{\left(1.4 \dot{x}^{2}+g\right) x}{1.4\left(1^{2}+x^{2}\right)}\right)
$$

Matlab Code (Ball.m)

```
% Dynamics of a ball rolling in a bowl where
% y = 1/2 x^2
%
x = 1.5;
dx = 0;
dt = 0.01;
t = 0;
while(t < 100)
% compute the acceleration
ddx = -( 1.4*dx*dx + 9.8) * x / ( 1.4*(1 + x*x) );
% integrate
dx = dx + ddx*dt;
x = x + dx*dt;
% display the ball
    y = 0.5*x*x;
    x1 = [-2:0.01:2]';
    y1 = 0.5* (x1 .^ 2);
    % draw the ball
    i = [0:0.01:1]' * 2 * pi;
    xb = 0.05*cos(i) + x;
    yb}=0.05*\operatorname{sin}(i)+0.5*\mp@subsup{x}{}{\wedge}2+0.05 + 0.02*abs(x)
    % line through the ball
    q = [0, pi] - x/0.05;
    xb1 = 0.05*}\operatorname{cos(q) + x;
    yb1 = 0.05*sin(q) + 0.5*x^2 + 0.05 + 0.02*abs(x);
    plot(x1,y1,'b', xb, yb, 'r', xb1, yb1, 'r');
    pause(0.01);
    end
```

