
Path Planning

Path Planning is how to go from one point to another in a fixed amount of time.  There are several ways to do

this.  The objective here is to expose you to several of these options and showcase the problems with each.

As an example, suppose you have a single mass which is to go from points P0 to P3 with 2 seconds elapsing from

point to point
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How you go from one point to another (i.e. the position vs. time) is what path planning is all about.  This lecture

covers several approaches and points out some of the advantages and disadvantages of each.

One way to go from one point to the next (such as P0 to P1) is to use linear interpolation:

P(k) = (1 − k)P0 + kP1

where

k = 0 at the start of the movement, and

k = 1 at the end of the movement

The challenge is how to define k  as a funciton of time.

For the sake of simplicity, assume the duration of the move is 1 second.  Scaling time by T will still give an

arbitary solution.
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Option 1: Linear Interpolation

The simplest definition is straight line.

k = t

The advantage is simplicity.  The disadvantage is the velocity has a jump discontinuity:
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Normalized position, velocity, and acceleration with linear interpolation

If you apply this to the problem of tracing out a triancle, you get the following:

Code:

P0 = [20 ; -30 ; 30 ; 1];
P1 = [20 ;  30 ; 30 ; 1];
P2 = [20 ;   0 ; 80 ; 1];
 
P01 = Spline(P0, P1, 2);
P12 = Spline(P1, P2, 2);
P20 = Spline(P2, P0, 2);
 
TIP = [P01, P12, P20];
 
t = [1:length(TIP)]' * 0.01;
 
plot(t,TIP')
pause(5)
 
Vel = derivative(TIP);
Acc = derivative(Vel);
plot(t,Acc')

Spline is a routine which defines the tip position every 10ms as you go from point P0 to point P1:
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function [Y] = Spline(P0, P1, T)
   t = [0.01:0.01:T] / T;
   a - t;
   Y = [];
   for i=1:length(a)
       Y = [Y, (1-a(i))*P0 + a(i)*P1];
       end
   end

The resulting tip position and acceleration with linear interpolation is as follows:

Tip position vs. time with Linear Interpolation

Acceleration vs. Time with linear interpoaltion
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Since acceleration is proportional to current, this form of path plannign requires infinte currents: it's not the best

choice.

Option 2:  Cosine Interpolation

To avoid the jump discontinuities in velocity, let

k = 


1−cos (πt)

2



This then results in finite velocities and finite accelerations:

k =
π

2
sin (πt)

k =
π2

2
cos (πt)
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Normalized position, velocity, and acceleration with cosine interpolation

The spline function then becomes:

function [Y] = Spline(P0, P1, T)
 
   t = [0.01:0.01:T] / T;
   a = (1 - cos(pi*t)) / 2;
   
   Y = [];
   
   for i=1:length(a)
       Y = [Y, (1-a(i))*P0 + a(i)*P1];
   end
  
   end

Tracing out a triangle using a cosine interpolation results in the following tip position and angles:
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Angles vs. Time with cosine interpolation

Tip acceleration vs. time with cosine interpolation
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Option 3: Cubic Interpolation

If you constrain the velocity at the endpoints to be zero, you need four degrees of freedom (two position and two

velocity constraints).  A cubic polynomial can satisfy all of these

k = at
3 + bt

2 + ct + d

Plugging in the constraints:

k(0) = 0 = d

k (0) = 0 = c

k(t) = 1 = a + b

k (1) = 0 = 3a + 2b

Solving gives

k = −2t
3 + 3t

2

Cubic interpolation is almost identical to cosine interpolation.  There is a very small difference:

Velocity is a parabola rather than a sine function

Acceleration is a line rather than a cosine function

From a practical standpoint, it's about the same.
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Normalized position, velocity, and acceleration with cubic interpolation

Using cubit interpolation for tracing out a triangle gives the following tip positions and accelerations
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Tip position vs. time for cubit interpolation

Tip acceleration with cubic interpolation
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Option 4:  Cubic + Cosine Interpolation

If you combine cosine interpolation with the cubic funciton, you get zero acceleration at the endpoints

τ = −2t
3 + 3t

2

k = 


1−cos (πτ)

2
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Normalized position, velocity, and acceleration with cubic + cosine interpolation

The spline function then becomes:

function [Y] = Spline(P0, P1, T)
 
   t = [0.01:0.01:T] / T;
   t1 = (1 - cos(pi*t)) / 2;
   a = -2*(t1.^3) + 3*(t1.^2);
   
   Y = [];
   
   for i=1:length(a)
       Y = [Y, (1-a(i))*P0 + a(i)*P1];
       end
  
   end

The tip position and acceleration is then:
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Tip position vs. time for cosine & cubic interpolation

Tip acceleration vs. time for cosine & cubic interpolation
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Example:  Puma Robot Tracing out a Triangle:

To illustrate how spline curve fitting can be applied to a robot manipulator, consider the following example:

Define the tip position vs. time so that a Puma robot traces out a  triangle in 6 seconds:

Desired Path for the PUMA robot

The tip positions are

Point P0 P1 P2 P3 = P0

X 20 20 20 20

Y -40 40 0 -40

Z 20 20 90 20

Time 0 2 4 6

To do this,

Define where the robot should be every 10ms

Use a spline curve fit for X, Y, and Z from point to point

Use the same spline curve fit so that the resulting path is a straight line
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Matlab Code:

P0 = [20 ; -30 ; 30 ; 1];
P1 = [20 ;  30 ; 30 ; 1];
P2 = [20 ;   0 ; 80 ; 1];
 
P01 = Spline(P0, P1, 2);
P12 = Spline(P1, P2, 2);
P20 = Spline(P2, P0, 2);
 
TIP = [P01, P12, P20];
 
Q = [];

for i=1:length(TIP)
   q = InversePuma(TIP(:,i));
   T = Puma(q, TIP);
   Q = [Q, q];
   pause(0.01);
   end
 

Once done, plot the resulting joint angles, velocities, and accelerations.  Just plot angle Q1 for convience here:

Q1 = Q(1,:);
Q2 = Q(2,:);
Q3 = Q(3,:);
t = [1:length(Q1)] * 0.01;
plot(t,Q1);
xlabel('Seconds');
ylabel('Q1')

Joint Angle Q1 vs. Time for tracing out a triangle:

dQ1 = derivative(Q1);
plot(dQ1,t);
xlabel('Seconds');
ylabel('dQ1/dt')
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Joint Velocity of Q1 vs. Time when tracing out a triangle

ddQ1 = derivative(dQ1);
plot(t,ddQ1)
xlabel('Seconds');
ylabel('d/dt(dQ1/dt)')

Joint Acceleration in Q1 vs. Time when tracing out a triangle.

Note that by making the tip position twice differentiable, the resulting joint angles are also twice differentiable.
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