ECE 761: Homework 12: Position Control of a 2-Link Robotic Arm Take 1: 300:1 Gear Reduction

Assume a DC servo motor drives a 2-link robotic arm with 300:1 gear reduction. Each link is 1m long with a point mass of 1kg at the tip.

1) Determine the joint angles so that the robot traces out a square with coordinates

- P0 = (0.1, -0.5) t = 0
- P1 = (1.1, -0.5) t = 1
- P2 = (1.1, +0.5) t = 2
- P3 = (0.1, +0.5) t = 3
 P4 = P0 = (0.1, -0.5) t = 4

PD Control

2) Determine the joint angles if the relationship between the desired angle (R) and actual angle is

$$\Theta = \left(\frac{2500}{s^2 + 70s + 2500}\right) R$$

3) Plot the actual and desired angle as the robot traces out the square.

PD Control with Feedforward Term (sR)

4) Determine the joint angles if the relationship between the desired angle (R) and actual angle is

$$\Theta = \left(\frac{70s + 2500}{s^2 + 70s + 2500}\right)R$$

5) Plot the actual and desired angle as the robot traces out the square.

PD Control with Feedforward Term (sR and s^2R)

6) Determine the joint angles if the relationship between the desired angle (R) and actual angle is

$$\boldsymbol{\Theta} = \left(\frac{s^2 + 70s + 2500}{s^2 + 70s + 2500}\right) \boldsymbol{R}$$

7) Plot the actual and desired angle as the robot traces out the square.