
ECE 761 - Homework #5

Forward & Inverse Kinematics of an RPR Robot

RPR Robot (d2 + d4 = 0)

Forward Kinematics (RPR.m)

1a) Modify the program RRR.m to model a RPR robot from homework set #4, modified so that d2+d4=0.

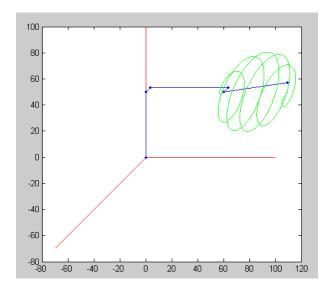
Link i	$;\alpha_{i-1}$	$;a_{i-1}$	$;d_i$	$;\theta_i$
	The angle between the Zi-1 and Zi axis (twist)	The distance from Zi-1 to Zi measured along the Xi-1 axis	The distance from Xi-1 to Xi measured along the Zi axis	The angle between Xi-1 and Xi measured about the Zi axis
1	0	0	50 cm	Q1
2	-90 deg	0	20 cm	0 deg
3	0 deg	d3	-20 cm	Q3
4 (tip)	0 deg	50	0	0

```
function [Tip] = RPR(W, TIP)
N = 4;
Q = [W(1), 0, W(3)];
alpha = [0, -pi/2, 0, 0];
a = [0, 0, W(2), 50];
d = [50, 20, -20, 0];
```

- 1b) Determine the tip position for the angles of
 - Q1 = 30 degrees, d3 = 40 cm, Q3 = 50 degrees
 - Q1 = 80 degrees, d3 = 60 cm, Q3 = 80 degrees

2. Inverse Kinematics (InverseRPR.m)

Determine the equations for the inverse-kinematics for an RPR robot.


• Check these equations using the tip positions from problem #1

3. Simulation: (RPR_Simulation.m).

a) Draw a ball: The tip position is

```
t = [0:0.01:10]';
y = 5*t + 60;
r = sqrt(25^2 - (y-85).^2);
x = r.*cos(t*pi);
z = r.*sin(t*pi) + 50;
BALL = [x, y, z, x.^0]';
```

- b) Plot the ending position of the robot drawing the ball
- c) Plot the joint angles (Q1, d3, Q3) vs. time

