
Jacobians and Cartesian Control

Jacobians, Joint Velocities, and Tip Velocities

A Jacobian

Relates the tip forces to joint torques, and

Converts from Cartesians (XYZ) motion to joint motion (θ1,θ2,θ3)

If the relationship between joint angles and tip position is
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Jacobian is defined as
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Example:  For the RR robot, the tip position is

x = c1 + c12

y = s1 + s12
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The Jacobian is then
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Example:  The tip position and joint angles of an RR robot is
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If the joint velocities are
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then the tip velocity is
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Jacobians and Cartesian Control

Jacobians also let you control the robot in tip (x,y) coordinates rather than joint angles.  
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This has problems, however, if the Jacobian has singularities (i.e. the determinant is zero).  At these points, you

can't do XY control - i.e. avoid them.
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Jacobian is Singular

Range Space

The Jacobian is singular at the edge of the range space (Q2 = 0 degrees) and at the origin (Q2 = 180 degrees)
meaning that the joint velocities go to infinity as the tip position approaches these regions during path planning.
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Example:  Define the desired tip position to be the XY coordinates which trace out a square:

Tracing out a Square using Cartesian PD Control

Using cosine-interpolation with 2-second moves, the XY position vs. time should be:

Desired tip positions to trace out a square (blue = Xtip, green = Ytip)

Case 1:  PD Control

The force at the tip should be
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Pick P = 200 and D = 20 to place the closed-loop poles at −10 ± j10
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The resulting position vs. time is

Tracking with Cartesian Control using PD terms

Adding gravity compensation along with the acceleration in the tip position:

Cartesian Control with PD, Gravity, and Acceleration Terms
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RR_XY_Control.m

% RR_XY_Control
 
 P0 = [0.5; 0];
 P1 = [1.5; 0];
 P2 = [1.5; 1];
 P3 = [0.5; 1];
 P4 = P0;
 
 T = 2;
 t = [0.01:0.01:T];
 a = (1 - cos(pi*t/T))/2;
 
 % for a step change in position, add the following line
 %a = 1*(a>0);
 
 X0 = P0*ones(1,50);
 X1 = P0*(1-a) + P1*a;
 X2 = P1*(1-a) + P2*a;
 X3 = P2*(1-a) + P3*a;
 X4 = P3*(1-a) + P4*a;
 X5 = P4*ones(1,50);
 Xr = [X0, X1, X2, X3, X4, X5];
 TIP = Xr;
 
 % tip velocity ( used for feedforward control )
 X2 = TIP(1,:);
 Y2 = TIP(2,:);
 
 dX2 = derivative(X2);
 dY2 = derivative(Y2);
 
 ddX2 = derivative(dX2);
 ddY2 = derivative(dY2);
 
 dXr = [dX2 ; dY2];
 ddXr = [ddX2 ; ddY2];
 
 Q = InverseRR(Xr(:,1));
 dQ = [0; 0];
 t = 0;
 dt = 0.001;
 
 % Start the simulation (dt = 0.001 for stability concerns)
 Xq = [];
 Tq = [];
 
 for i=1:length(Xr)
    Qr = InverseRR(Xr(:,i));
    for j=1:10
       c1 = cos(Q(1));
       s1 = sin(Q(1));
       c12 = cos(Q(1)+Q(2));
       s12 = sin(Q(1)+Q(2));
       
       X = [ c1 + c12 ;
             s1 + s12 ];
       J = [ -s1 - s12, -s12 ;
              c1 + c12,  c12 ];
       dX = J * dQ;
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% Control Law and Feedforward Terms
       Facc = ddXr(:,i);
       Fpid = 100*(Xr(:,i) - X) + 20*(dXr(:,i)*0 - dX );
 
 % gravity
       Tg = -9.8 * [ 2*c1 + c12 ;  c12 ];
 
       T = (J') * ( Fpid + Facc*0 ) - Tg*0;
 
       ddQ = RRDynamics(Q, dQ, T);
       dQ = dQ + ddQ * dt;
       Q = Q + dQ*dt;
       t = t + dt;
       end
 
    RR(Q, Qr, TIP);
 
    Xq = [Xq, X];
    Tq = [Tq, T];
 end
 
 pause(5);
 
 t = [1:length(Xr)] * 0.01;
 clf
 subplot(211)
 plot(t,Xq,t,Xr);
 xlabel('Time (seconds)');
 ylabel('Tip (meters)');
 subplot(212)
 plot(t,Tq);
 xlabel('Time (seconds)');
 ylabel('Torque (Nm)');
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