
Jacobians and Cartesian Control

Jacobians, Joint Velocities, and Tip Velocities

A Jacobian

Relates the tip forces to joint torques, and

Converts from Cartesians (XYZ) motion to joint motion (θ1,θ2,θ3)

If the relationship between joint angles and tip position is

P =




x

y




 =





f(θ1,θ2)

g(θ1,θ2)






then the change in motion (velocity) is

nP
.

=




x
.

y
.



 =








∂f

∂θ1

∂f

∂θ2

∂g

∂θ1

∂g

∂θ2













θ
.
1

θ
.
2






Jacobian is defined as

J(θ1,θ2) =







∂f

∂θ1

∂f

∂θ2

∂g

∂θ1

∂g

∂θ2












x
.

y
.



 = J






θ
.
1

θ
.
2






X
RR Robot

-Y

0.5 1.0 1.5

0.5

1.0

1.5

q2

-q1

P

P'

x'

y'

Example: For the RR robot, the tip position is

x = c1 + c12

y = s1 + s12

NDSU Jacobians & Cartesian Control ECE 494

JSG 1 rev June 3, 2018

The Jacobian is then

J =







∂x

∂θ1

∂x

∂θ2

∂y

∂θ1

∂y

∂θ2








J =





−s1 − s12 −s12

c1 + c12 c12






Example: The tip position and joint angles of an RR robot is

P =




x

y




 =





1.0

−0.3






Q =





θ1

θ2




 =






−1.3130

2.0432






If the joint velocities are

Q
.

=





θ
.
1

θ
.
2




 =





0.2

0.3






then the tip velocity is

P
.

= J ⋅ Q
.

P
.

=




0.3 −0.667

1 0.7451









0.2

0.3






P
.

=





−0.1401

0.4253






If the tip velocity is

P
.

=




1

0






then the joint velocities must be

Q
.

= J−1P
.

Q
.

=




0.3 −0.667

1 0.7451






−1




1

0






Q
.

=





0.8367

−1.1230






NDSU Jacobians & Cartesian Control ECE 494

JSG 2 rev June 3, 2018

X
RR Robot

-Y

0.5 1.0 1.5

0.5

1.0

1.5

q2

-q1

P

y' = +0.42

x' = -0.14

P'

Jacobians and Cartesian Control

Jacobians also let you control the robot in tip (x,y) coordinates rather than joint angles.

R

desired

tip

position

P

D

Feedforward

Terms

JT
F T Robot

Dynamics

Q'
J

X' X1

s Tip

PositionTip

Velocity

Joint

Velocity

TorquesTip

Force
PD Control Jacobian forward

Kinematics

This has problems, however, if the Jacobian has singularities (i.e. the determinant is zero). At these points, you

can't do XY control - i.e. avoid them.

X0

Y0

Fx

Fy

T1

T2

Tip Force

Joint Torques

(x1,y1)

(x2,y2)

Jacobian is Singular

Range Space

The Jacobian is singular at the edge of the range space (Q2 = 0 degrees) and at the origin (Q2 = 180 degrees)
meaning that the joint velocities go to infinity as the tip position approaches these regions during path planning.

NDSU Jacobians & Cartesian Control ECE 494

JSG 3 rev June 3, 2018

Example: Define the desired tip position to be the XY coordinates which trace out a square:

Tracing out a Square using Cartesian PD Control

Using cosine-interpolation with 2-second moves, the XY position vs. time should be:

Desired tip positions to trace out a square (blue = Xtip, green = Ytip)

Case 1: PD Control

The force at the tip should be

T = JT



P




Xref − Xtip

Yref − Ytip




 + D





Xref − X

.
tip

Yref − Y
.
tip











Pick P = 200 and D = 20 to place the closed-loop poles at −10 ± j10

NDSU Jacobians & Cartesian Control ECE 494

JSG 4 rev June 3, 2018

The resulting position vs. time is

Tracking with Cartesian Control using PD terms

Adding gravity compensation along with the acceleration in the tip position:

Cartesian Control with PD, Gravity, and Acceleration Terms

NDSU Jacobians & Cartesian Control ECE 494

JSG 5 rev June 3, 2018

RR_XY_Control.m

% RR_XY_Control

 P0 = [0.5; 0];
 P1 = [1.5; 0];
 P2 = [1.5; 1];
 P3 = [0.5; 1];
 P4 = P0;

 T = 2;
 t = [0.01:0.01:T];
 a = (1 - cos(pi*t/T))/2;

 % for a step change in position, add the following line
 %a = 1*(a>0);

 X0 = P0*ones(1,50);
 X1 = P0*(1-a) + P1*a;
 X2 = P1*(1-a) + P2*a;
 X3 = P2*(1-a) + P3*a;
 X4 = P3*(1-a) + P4*a;
 X5 = P4*ones(1,50);
 Xr = [X0, X1, X2, X3, X4, X5];
 TIP = Xr;

 % tip velocity (used for feedforward control)
 X2 = TIP(1,:);
 Y2 = TIP(2,:);

 dX2 = derivative(X2);
 dY2 = derivative(Y2);

 ddX2 = derivative(dX2);
 ddY2 = derivative(dY2);

 dXr = [dX2 ; dY2];
 ddXr = [ddX2 ; ddY2];

 Q = InverseRR(Xr(:,1));
 dQ = [0; 0];
 t = 0;
 dt = 0.001;

 % Start the simulation (dt = 0.001 for stability concerns)
 Xq = [];
 Tq = [];

 for i=1:length(Xr)
 Qr = InverseRR(Xr(:,i));
 for j=1:10
 c1 = cos(Q(1));
 s1 = sin(Q(1));
 c12 = cos(Q(1)+Q(2));
 s12 = sin(Q(1)+Q(2));

 X = [c1 + c12 ;
 s1 + s12];
 J = [-s1 - s12, -s12 ;
 c1 + c12, c12];
 dX = J * dQ;

NDSU Jacobians & Cartesian Control ECE 494

JSG 6 rev June 3, 2018

% Control Law and Feedforward Terms
 Facc = ddXr(:,i);
 Fpid = 100*(Xr(:,i) - X) + 20*(dXr(:,i)*0 - dX);

 % gravity
 Tg = -9.8 * [2*c1 + c12 ; c12];

 T = (J') * (Fpid + Facc*0) - Tg*0;

 ddQ = RRDynamics(Q, dQ, T);
 dQ = dQ + ddQ * dt;
 Q = Q + dQ*dt;
 t = t + dt;
 end

 RR(Q, Qr, TIP);

 Xq = [Xq, X];
 Tq = [Tq, T];
 end

 pause(5);

 t = [1:length(Xr)] * 0.01;
 clf
 subplot(211)
 plot(t,Xq,t,Xr);
 xlabel('Time (seconds)');
 ylabel('Tip (meters)');
 subplot(212)
 plot(t,Tq);
 xlabel('Time (seconds)');
 ylabel('Torque (Nm)');

NDSU Jacobians & Cartesian Control ECE 494

JSG 7 rev June 3, 2018

