NDSU Jacobians & Cartesian Control ECE 494

Jacobians and Cartesian Control

Jacobians, Joint Velocities, and Tip Velocities

A Jacobian

+ Relates the tip forces to joint torques, and

+  Converts from Cartesians (XYZ) motion to joint motion (61,02, 03)

If the relationship between joint angles and tip position is
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Example: For the RR robot, the tip position is
X=C1+C12

V=S§1+S12
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The Jacobian is then
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Example: The tip position and joint angles of an RR robot is
p_| X |_ 1.0
y -0.3
0 | [ -1.3130
0, | | 2.0432
If the joint velocities are

SRR

then the tip velocity is

Q

P=J-Q
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If the tip velocity is
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then the joint velocities must be

Q=J7P 0.5——
- _ P
o] 03 —0.667} [ 1 } coom
- 1 0.7451 0 qf ‘ y'=+0.42
_ \ % P % % _
Q: 0.8367 0.5 1.0 15 RR éobot
| -1.1230

JSG 2 rev June 3, 2018



N DSU Jacobians & Cartesian Control ECE 494

Jacobians and Cartesian Control

Jacobians also let you control the robot in tip (X,y) coordinates rather than joint angles.

Feedforward

Terms
R T T Robot Q J X' 1 X

Ti J Dynamics s ]
desired Foprce _| Torques Joint Tip
tip PD Control Jacobian Velocity forward Tip Position
position Kinematics | Velocity
BEN

This has problems, however, if the Jacobian has singularities (i.e. the determinant is zero). At these points, you
can't do XY control - i.e. avoid them.

Fy
Tip Force

Fx

Joint Torques

o/

vo/ Jacobian is Singul

X0

The Jacobian is singular at the edge of the range space (Q2 = 0 degrees) and at the origin (Q2 = 180 degrees)
meaning that the joint velocities go to infinity as the tip position approaches these regions during path planning.
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Example: Define the desired tip position to be the XY coordinates which trace out a square:

05 1 I 1 1

Tracing out a Square using Cartesian PD Control

Using cosine-interpolation with 2-second moves, the XY position vs. time should be:
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Desired tip positions to trace out a square (blue = Xtip, green = Ytip)

Case 1: PD Control
The force at the tip should be

T:JT P Xref_Xtip +D Xref_).(tip
Yref - Ytip Yref - Ytip

Pick P =200 and D = 20 to place the closed-loop poles at -10% ] 10
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The resulting position vs.

time 18

0.5

Adding gravity compensation along with the acceleration in the tip position:

Tracking with Cartesian Control using PD terms

05

Cartesian Control with PD, Gravity, and Acceleration Terms
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RR_XY_Control.m
% RR_XY Control
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t = [0.01:0.01:T7;
a = (1 - cos(pi*t/T))/2;

% for a step change in position, add the following line

%$a = 1*(a>0);

X0 = PO*ones (1,50);

X1 = PO0*(1l-a) + Pl*a;

X2 = Pl*(l-a) + P2*a;

X3 = P2*(l-a) + P3*a;

X4 = P3*(l-a) + P4d*a;

X5 = P4*ones (1,50);

Xr = [X0, X1, X2, X3, X4, X51;

TIP = Xr;

% tip velocity ( used for feedforward control )

X2 = TIP(1,:);
Y2 = TIP(2,:);

dx2 derivative (X2);
d¥Y2 = derivative (Y2);

ddXx2 derivative (dX2);
ddY2 = derivative (d¥2);

dXr = [dX2 ; dY2];
ddXr = [ddX2 ; ddY2];

Q = InverseRR(Xr(:,1));
dQ = [0; 0];

t = 0;

dt = 0.001;

o\

Start the simulation (dt

Xqg = [1;
Tqg = [1;
for i=1l:length (Xr)
Qr = InverseRR(Xr(:,1));
for j=1:10
cl = cos(Q(1));
sl = sin(Q(1));
cl2 = cos(Q(1)+Q(2));
sl2 = sin(Q(1)+Q(2));
X = [ cl + cl2 ;
sl + sl12 1;
J =1 -s1 - sl12, -sl2

cl + cl2, cl2
dX = J * dQ;

0.001 for stability concerns)
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% Control Law and Feedforward Terms
Facc = ddXr(:,1);

Fpid = 100* (Xr(:,1) - X) + 20*(dXr(:,i)*0 - dX );
% gravity

Tg = -9.8 * [ 2*cl + cl2 ; cl2 ];

T = (J') * ( Fpid + Facc*0 ) - Tg*O0;

ddQ = RRDynamics(Q, dQ, T);
dQo = dQ + ddo * dt;

QO = Q + do*dt;
t =t + dt;
end

RR(Q, Qr, TIP);

Xq [Xg, XI;
Tg = [Tg, T];
end

pause (5) ;

t = [l:length(Xr)] * 0.01;
clf

subplot (211)

plot (t,Xqg, t,Xr);

xlabel ('Time (seconds)');
ylabel ('Tip (meters)');
subplot (212)

plot (t, Tq);

xlabel ('Time (seconds)');
ylabel ('Torgque (Nm) '");
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