NDSU Control of a RR Robot ECE 494

Control of a RR Robot

Consider the problem of controlling the tip-position of a 2-link robotic arm. Assume it is to trace out a square in
8 seconds:

Y oA
t=4

1kg t=2
=
X

From before, the dynamics of the robotic arm are:

(3+2¢c;) (1+c) || 64 | | Ty N 252010, +5,63 ¢ 3¢t +C
(1+cy) 1 0, T, —s,0? Cia

To control the angle of each motor, you need to
Define the desired angle at any given time (the set-point), and

Determine the torque required to drive the motor to that angle.

First, let's use the previous path-planning routines for the RRR robot to define the desired
Tip positions, and

Joint angles

JSG 1 rev June 3, 2018

NDSU Control of a RR Robot ECE 494

First, define the tip positions. Using the MoveTo() routine from before, this can be done as follows:

disp('Defining Path to Follow');

P1 = [0.5, 01"';
P2 = [1.5, 01"';
P3 = [1.5, 11°';
P4 = [0.5, 11°';
P5 = P1;

disp('Calculating tip positions');
% Determine the tip positions every 10ms
[A,T1] = MoveTo (P1l,P2,2);

[A,T2] = MoveTo (P2,P3,2);

[A, T3] = MoveTo (P3,P4,2);

[A,T4] = MoveTo (P4,P5,2);

TIP = [T1,T2,T3,T4];

0s

06

Seconds

Desired Tip Position to Trace Out a Square

Next, convert these to joint angles. To do this, write a routine to compute the joint angle given the tip position:

= InverseRR(TIP)
x = TIP

function [Q
(
vy = TIP(

]
1);
2);

r = sqrt(x"2 + y*2);
Qa = atan2(y, x);

Qb = acos(r/2);

Q1 = Qa + Qb;

Q2 = -2*Qb;

Q = [Q1l; Q2];

end

With this, convert tip positions to joint angles

disp('Calculating joint angles');
% Determie the joint angles every 10ms
Qr = [1;
for i=1l:length(TIP)

g = InverseRR(TIP(:,1));

Qr = [Qr, qgl;
end

JSG 2 rev June 3, 2018

NDSU Control of a RR Robot ECE 494

Desired Joint Angles vs Time for tracing out a square

Once you know where the joint angles are supposed to be, you can start definining the feedback control law.

PD Control

If you have decoupled systems with inertia, J, and no friciton, the dynamics are
T=Js%0

If you apply a proportional-derivative feedback control law
T=P(®©,-0)—-Dsb

then the dynamics become

PO, =Js?’0+ DsO + PO

0= (s o

D and P are chosen to place the poles of the closed-loop system.

or

Assume J =5 (worst case for mass 1). To place the closed-loop poles at

s=—41j4

you get
Js?>+Ds+ P =5(s*+ 8s + 32)
D =40
P =160

JSG 3 rev June 3, 2018

NDSU Control of a RR Robot ECE 494

Assume J = 1 (worse case for mass 2)
Js?+Ds+P=1(s*>+25s+2)
D=2
P=2

Applying this feedback control law
for i=1l:length (Qr)

Tl 160*(Qr(1,i) - Q(1)) + 40*(0 - dQ(1));
T2 = 32*(Qr(2,i) - Q(2)) + 8*(0 - dQ(2));
T = [T1;, T2];

ddQ = TwoLinkDynamics (Q, dQ, T);
dQ = dQ + ddQ * dt;

Q Q + do*dt;

t t + dt;

)

% rest of code

o5l \]

Tracking of the RR robot for a PD controller

One of the reasons the robot is not tracking the desired angle well is gravity is pulling down.

JSG 4 rev June 3, 2018

NDSU Control of a RR Robot ECE 494

PD Control with Gravity Compensation (FeedForward Control)

If you solve the previous dynamics for torque, you get:

Ti | | (4+2¢c) (1+cy) | 6 25,016, +5,63 ‘g 3¢i+Cra

.| | 1+c) 1 0, —s,0% C1a

To compensate for gravity, add a term

IE 3ci+Cpp
= Top —
T, pp—8 c1r

Note that you can do this offline: once you compute the desired tip positions and angles, you can compute the
torque due to gravity. This speeds up the compuations while running.

15+ 4
' —. i}

05r 4
. S —

05 ! L I
0.5 0 0.5 1 .45 2

PD Control with Gravity and Coriolis Force Compensation (Feedforward Control)

Similarly, if you add in the coriolis forces as well you get slightly better tracking

JSG 5 rev June 3, 2018

NDSU Control of a RR Robot ECE 494

05 —

_05 1 | |
-0.5 0 0.5 1 1.4 2

Velocity Feedfoward Control:

Once you cancel the gravity and coriolis terms, the dynamics become

0=(~L-)e,

Ideally, the transfer funciton should be 1 (meaning the angle exactly matches the desired angle). If you add a
derivative term

you get

0= (%) 0
Js2+Ds+P) "

which is closed to one (meaning better tracking). To do this, you need to
Take the derivative of the deisred angles, and

Bias the torque by D times this derivative

In Matlab:

JSG 6 rev June 3, 2018

NDSU Control of a RR Robot

ECE 494

[}

% Velocity - right after computing the desired angles
dQrl = Derivative (Qr (1, :));

dQr2 = Derivative (Qr (2, :));

dQr = [dQrl ; dQr2];

for i=1l:length (Qr)
Tl = 160*(Qr(1,1) - Q(1)) + 40*(dQr(l,i) - dQ(1));
T2 = 32*(Qr(2,1) - Q(2)) + 8*(dQr(2,i) - dQ(2));
T = [T1; T2];

% plus gravity

T=T-G(:,1);
% plus coriolis
T=T-C(:,1);

0sF

0.5 | 1 |

-0.5 0 05 1 15

JSG 7

rev June 3, 2018

NDSU Control of a RR Robot ECE 494

Accelearation Feedfoward Control:
Finally, if you also bias the torque by the acceleration term:

T, _ (3+2¢c72) (1+c¢y) 61
T, B (1+c2) 1 éz

you get a transfer function of

Js?+Ds+P
o= (zzpar)g,
Js“+Ds+P

% plus gravity
=T - G(:,1);
plus derivative

o° H

T =T + diag([40, 8]) *dQr(:,1i);
% plus coriolis

T =T - C(:,1);

% plus acceleration

c2 = cos(Q(2));
T =T + [3+2*c2, 1+c2 ; 1+4+c2, 1]1*ddQr(:,1i);

05k i

s i 05 1 15 2

Actual & Dsired Tip Position for PD, Gravity, Coriolis, Derivative, and Inertia Compensation

JSG 8 rev June 3, 2018

NDSU Control of a RR Robot ECE 494

o\

RR_Control.txt
Position control of a RR robot
similar to a RRR robot with Q1 = 0, meaning Y=0

o° o\ oo

o\

Define a square to trace
disp('Defining Path to Follow');

Pl = [0.5, 0]"';

P2 = [1.5, 0]1"';

P3 = [1.5, 11°';

P4 = [0.5, 1]1"';

P5 = P1;
disp('Calculating tip positions');

T = 2;

t = [0.01:0.01:T7;

a = (1 - cos(t*pi/T))/2;

TO = Pl*ones (1,50);

Tl = P1*(l-a) + P2*a;

T2 = P2*(1l-a) + P3*a;

T3 = P3*(1l-a) + P4d*a;

T4 = P4*(1l-a) + P5*a;

T5 = P5*ones(1,50);

TIP = [TO,T1,T2,T3,T4,T5];

disp('Calculating joint angles');
% Determie the joint angles every 10ms
Oor = [];
for i=l:length(TIP)
q = InverseRR(TIP(:,1));

Qr = [Qr, gl;

end
cl = cos(Qr(l,:));
sl = sin(Qr (1, :));
c2 = cos(Qr(2,:));
s2 = sin(Qr (2, :));
cl2 = cos(Qr(l,:) + Qr(2,:));
sl2 = sin(Qr (1, :) + Qr(2,:));

disp('Calulating gravity matrix');
% gravity
g = 9.8;

G = —-g*[2*cl + cl2 ; cl2];

disp('Calulating gravity torques');
% Velocity
dQrl = derivative (Qr (1, :));
dQr2 = derivative (Qr(2,:));

dQr = [dQrl ; dQor2];

disp('Calulating coriolis torques');

% Coriolis Forces
C = [2*%s2.*dQrl.*dQr2 + s2.*dQr2.*dQr2 ; -s2.*dQrl.*dQrl];

disp('Calulating inertia torques');
% Acceleration
ddQrl = Derivative (dQr (1, :));
ddQr2 = Derivative (dQr (2, :));

ddQr = [ddQrl ; ddQr2];

do = [0; 01;
T = [0; 0];

JSG 9 rev June 3, 2018

NDSU Control of a RR Robot

ECE 494

t = 0;
dt = 0.01;
$ —————— Main Loop ————————————————
X = [JI
Xr = [1;
T2 = [1;

disp('Tracing out a Square');
for i=1l:length (Qr)

Tl = 160*(Qr(1,1i) - Q
T2 = 32*(Qr(2,1) - Qf
T = [T1; T2];

plus gravity
T =T - G(:,1)*0;

1)) + 40*(dQr(1,1)*0 - dQ(1));
)

(
2)) + 8*(dQr(2,1)*0 - dQ(2));

o\

o\

plus derivative
(already in the Tl and T2 equations)

o\

% plus coriolis
T =T - C(:,1)*0;

o\

plus acceleration
c2 = cos(Q(2));
T =T + [3+42*%c2, 1+c2 ; 1l+c2, 1]1*ddQr(:,1i)*0;

% Inegrate
ddQ = RRDynamics (Q, dQ, T);
dQ = dQ + ddQ * dt;
Q = Q + do*dt;
t =t + dt;

RR(Q, Qr(:,1i), TIP);

X = [X, [cos(Q(1))+cos(Q(1)+Q(2)) ; sin(Q(1))+sin(Q(1)+Q(2))]1];

T12 = [T12, T];

pause (0.01);
end

pause (5) ;

t = [l:length(TIP)] * 0.01;
clf

subplot (211)

plot (t,X,t,TIP);

xlabel ('Time (seconds)');
ylabel ('"Tip (meters)');
subplot (212)

plot (t,T12);

xlabel ('Time (seconds)');
ylabel ('Torque (Nm) '");

JSG 10

rev June 3, 2018

