Translation Matrices

A transform matrix is a way to

- Shift a point by the vector ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- Rotate the coordinate frame, and
- Zoom in and out with a scaling factor of w.

Since each point is defined by a 4 x 1 vector, the transformation matrix needs to be a 4×4 matrix:

$$
a_{4 x 1}=T_{4 x 4} b_{4 x 1}
$$

T is composed of three parts:

- A 3×3 rotation matrix (identity in this example)
- A 3x1 translation matrix ($[b x, b y, b z] T$)
- A $1 x 1$ scalar (w) defining the zoom in / zoom out factor.

$$
\left[\begin{array}{c}
a_{x} \\
a_{y} \\
a_{z} \\
\cdots \\
a_{w}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & \vdots & x \\
0 & 1 & 0 & \vdots & y \\
0 & 0 & 1 & \vdots & z \\
\cdots & \cdots & \cdots & & \cdots \\
0 & 0 & 0 & \vdots & w
\end{array}\right]\left[\begin{array}{c}
b_{x} \\
b_{y} \\
b_{z} \\
\cdots \\
b_{w}
\end{array}\right]
$$

Example 1: Shift the point $[1,2,3]$ by $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$ Use a scaling factor of one $(\mathrm{w}=1)$.

$$
\begin{aligned}
& b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right] \\
& a=\left[\begin{array}{llll}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
1+x \\
2+y \\
3+z \\
1
\end{array}\right]
\end{aligned}
$$

Point b has been shifted by $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$.

Zoom in with a scaling factor of 2

$$
a=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
2
\end{array}\right]
$$

This means if you plot the point ($1,2,3$), it will be doubled (zoomed in with a factor of 2)

Example 3: Project a 3D image of an arrow on the YZ plane.
The arrow has eight points
$-->$ Arrow

0.	0.	0.	0.	0.	0.	0.	0.
-1.	1.	1.	1.5	0.	-1.5	-1.	-1.
0.	0.	1.	1.	2.	1.	1.	0.
1.	1.	1.	1.	1.	1.	1.	1.

The display routine in Matlab

```
function Display3D(DATA, T)
% scaling factor
    s = T (4,4);
% draw the X, Y, Z axis
        X = [1,0,0,1]';
        Y = [0,1,0,1]';
        Z = [0,0,1,1]';
        O = [0,0,0,1]';
        DATA = T*DATA;
        TO = T;
        TO(1,4) = 0;
        TO (2,4) = 0;
        T0(3,4) = 0;
% transform
        XO = TO*X;
        YO = TO*Y;
        ZO = TO*Z;
        Origin = TO*O;
% display is the y-z plane
        hold off;
        plot([-2,2],[-2,2],'wx');
        hold on;
% Project onto the YZ axis
        Tx = S* [0, 1,0,0];
        Ty = s* [0,0,1,0];
        plot(Tx*[Origin, X0], Ty*[Origin,X0], 'g');
        plot(Tx*[Origin, YO], Ty*[Origin,YO], 'r');
        plot(Tx*[Origin, ZO], Ty*[Origin,ZO], 'm');
% display the data
        plot(Tx*DATA,Ty*DATA, 'b')
end
```

To draw this in Matlab

```
c = cos(25*pi/180);
s = sin(25*pi/180);
Ty = [c,0,s,0;0,1,0,0;-s,0,c,0;0,0,0,1];
c = cos(-45*pi/180);
s = sin(-45*pi/180);
Tz = [c,-s,0,0;s,c,0,0;0,0,1,0;0,0,0,1]
Tdisp = Ty*Tz;
Display3D(ARROW,Tdisp);
```


Plot the arrow as you move closer to it (meaning the scaling factor w changes from 0.1 to 3.0)

$$
\begin{aligned}
& T=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & w
\end{array}\right] \\
& T=\operatorname{eye}(4,4) ; \\
& \text { for } i=0: 300 \\
& W=i / 100 ; \\
& \mathrm{T}(4,4)=\mathrm{w} ; \\
& \\
& \quad \begin{array}{l}
\text { Display } 3 \mathrm{D}(\text { ARROW, } \mathrm{T} * \text { Tdisp }) ; \\
\text { pause }(0.01) ; \\
\text { end }
\end{array}
\end{aligned}
$$

This shows the arrow getting bigger as you get closer to it

Arrow with scaling factor (w) equal to $\{1.0,1.5,2.0\}$

Translation:

Shift the data in the X direction

$$
T_{x}=\left[\begin{array}{llll}
1 & 0 & 0 & x \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Shift the data in the Y direction:

$$
T_{y}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & y \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Shift the data in the Z direction

$$
T_{z}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

For example: Translate the arrow in the x, y, and z direction:

```
T = eye (4,4);
for i=0:100
    T(1,4) = i / 100; % x
    Display3D(T*ARROW,Tdisp);
    pause(100);
    end
```


Translation in the x, y, and z direction by one unit

Example: Where is the point $(1,2,3)$ if you translate it by $(4,5,6)$?

```
>> P = [1;2;3;1]
    1
    2
    3
    1
>> T = eye(4);
>> T(1,4) = 4;
>> T(2,4) = 5;
>> T (3,4) = 6;
>> T
```

1	0	0	4
0	1	0	5
0	0	1	6
0	0	0	1

> T^{*} P
5
7
9
1

Answer: The point is now at $(5,7,9)$

Translation Plus Rotation.

What happens if you combine a translation matrix plus a rotation matrix?
Note that matrix multiplication is not commutative: the order makes a difference. For example, define two matricies:

Tx is a rotation matrix about the X axis by 45 degrees

```
>> Tx = [1,0,0,0;0,c,-s,0;0,s,c,0;0,0,0,1]
\begin{tabular}{rrrr}
1.0000 & 0 & 0 & 0 \\
0 & 0.7071 & 0.7071 & 0 \\
0 & -0.7071 & 0.7071 & 0 \\
0 & 0 & 0 & 1.0000
\end{tabular}
```

Tt is a translation matrix of $(4,5,6)$

```
> Tt = T
```

1	0	0	4
0	1	0	5
0	0	1	6
0	0	0	1

If you translate then rotatio, the net result is:

```
> Tx*T
    1.0000 rrrr
```

If you rotate then translate, then

```
>> T*TX
    1.0000 0 0 4.0000
            0.0.7071 0.7071 5.0000
            0 -0.7071 0.7071 6.0000
```

In Matlab, you can see this effect as follows:

- Rotate about the X axis while
- Translating about the Z axis:

```
c = cos(5*pi/180);
s = sin(5*pi/180);
Tx = [1,0,0,0;0,c,-s,0;0,S,c,0;0,0,0,1];
Ty = [c,0,s,0;0,1,0,0;-s,0, c,0;0,0,0,1];
Tz = [c,-s,0,0;s,c,0,0;0,0,1,0;0,0,0,1];
for i=1:200
    T = Tz ^ i;
    T(1,4) = i/200;
    Display3D(T*ARROW,Tdisp);
    pause(0.01);
    end
```


The arrow spins about its Z-axis (Tz) while translating along the x -axis
In other words, when you mix a translation and a rotation matrix:

- You translate ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) relative to the original axis, and then
- Rotate the object

