
LQG Observers

Recall that if you have a dynamic system

sX = AX + BU

Y = CX

you can stabilize the system using full-state feedback

U = −KxX +KrR

resulting in the closed-loop system being

sX = (A − BKx)X + (BKr)R

The feedback gains, Kx, can be computed using Bass-Gura (pole placement) or LQR methods.

R Kr

Kx

Plant

Y

X
U

Full-State Feedback to Stabilize the System

One problem with these methods is you need to measure all of the states. If you can't measure certain states, you
can estimate them using a full-order observer

sX = AX + BU +H⎛
⎝Y − Y⎞⎠

Y = CX

where H is the observer gain matrix choses to stabilize the observer dynamics

E = X − X

sE = (A −HX)E

The observer gain, H, can then be found using Bass-Gura (pole placement) to stabilize (A - HC).

NDSU LQR Observers ECE 463

JSG 1 rev April 18, 2016

Plant

H

sX X Y
C

A

B

U Y

^^^
1/s

X̂

Observer

If the states are not measured, they can be estimated with a full-order observer

A strength of Bass-Gura is you can place the poles wherever you like. This is also its weakness - you don't know
where the poles should be placed. One way around this is to determine H using LQR methods.

LQR methods find the gain, Kx, to place the poles of

A − BKx

Here, in contrast, we are finding H to place the poles of

A −HC

If you transpose a matrix, the eigenvalues don't change. If you transpose (A-HC), you get

AT − CTHT

This is then in the same form as (A - BKx) only

A is replaced with AT

B is replaced with CT, and

The gain you compute is HT

However you come up with the observer gains, the resulting plant plus observer dynamics become:

s
⎡

⎣
⎢

X
X
⎤

⎦
⎥ =

⎡

⎣
⎢

A 0
0 A

⎤

⎦
⎥
⎡

⎣
⎢

X
X
⎤

⎦
⎥ +

⎡

⎣
⎢

B
B
⎤

⎦
⎥U +

⎡

⎣
⎢

0
H

⎤

⎦
⎥ ⎛⎝Y − Y⎞⎠

or

s
⎡

⎣
⎢

X
X
⎤

⎦
⎥ =

⎡

⎣
⎢

A 0
HC A −HC

⎤

⎦
⎥
⎡

⎣
⎢

X
X
⎤

⎦
⎥ +

⎡

⎣
⎢

B
B
⎤

⎦
⎥U

NDSU LQR Observers ECE 463

JSG 2 rev April 18, 2016

Example: Metal Bar (4th order RC filter). Design a full-order observer for the 4th-order heat equation.

First, pick Q and R. After some trial and error, let

Q = I
R = 1

>> Q = diag([1,1,1,1]);
>> R = 1;
>> H = lqr(A', C', Q, R)'

 0.3713
 0.3116
 0.2826
 0.2705

>> eig(A - H*C)

 -3.5606
 -2.4418
 -1.1441
 -0.2248 Dominant pole for the observer

The augmented system (plant plus observer) is then

>> A8 = [A, zeros(4,4);H*C, A-H*C]
>> B8 = [B; B];
>> C8 = eye(8,8);
>> D8 = zeros(8,1);

Add initial conditions so you can see the observer states converge to the plant states:

>> X0 = [0.5;1;1.5;2; 0;0;0;0]

 0.5000
 1.0000 initial conditions of the plant
 1.5000
 2.0000
 - - - - - -
 0
 0 initial conditions of the observer
 0
 0

>> y8 = step2(A8, B8, C8, D8, X0, t);
>> plot(t,y8)

NDSU LQR Observers ECE 463

JSG 3 rev April 18, 2016

Plant and Observer States for Q = I, R = 1. Note that the states converge

To speed up the observer, increase the weightings. Seeing which state works best:

Weight on X1 = 1000:
>> Q = diag([1000,1,1,1]);
>> R = 1;
>> H = lqr(A', C', Q, R)';
>> eig(A - H*C)

 -1.1826 + 1.3055i Dominant pole for the observer: 6x faster
 -1.1826 - 1.3055i
 -3.2132 + 0.1366i
 -3.2132 - 0.1366i

Weight on X2 = 1000:
>> Q = diag([1,1000,1,1]);
>> H = lqr(A', C', Q, R)';
>> eig(A - H*C)

 -4.1205
 -2.0341
 -1.8726 + 2.0161i Dominant pole: 8x faster
 -1.8726 - 2.0161i

Weight on X3 = 1000:
>> Q = diag([1,1,1000,1]);
>> H = lqr(A', C', Q, R)';
>> eig(A - H*C)

 -0.9989 Dominant pole: 4.5x faster
 -3.0160
 -4.2708 + 3.6451i
 -4.2708 - 3.6451i

NDSU LQR Observers ECE 463

JSG 4 rev April 18, 2016

Weight on X4 = 1000:
>> Q = diag([1,1,1,1000]);
>> H = lqr(A', C', Q, R)';
>> eig(A - H*C)

 -0.5857 dominant pole: 2x faster
 -1.9988
 -3.4132
 -31.6704

Looks like weighting X2 works best, so go with that. (Q is somewhat arbitrary - whatever seems to work)

>> Q = diag([1,1000,1,1]);
>> R = 1;
>> H = lqr(A', C', Q, R)'

 5.4325
 4.9030
 2.8963
 1.7915

>> A8 = [A, zeros(4,4);H*C, A-H*C];
>> B8 = [B; B];
>> C8 = eye(8,8);
>> D8 = zeros(8,1);
>> y8 = step2(A8, B8, C8, D8, X0, t);
>> plot(t,y8);

Step Response with Iniital Conditions: Q = diag(1 1000 1 1) R = 1

With this method, Q and R are just tools to use to adjust the observer dynamics. The resulting gains tend to be
smaller than you'd get with Bass-Gura (good). It's somewhat difficult to get a specific response, however.

NDSU LQR Observers ECE 463

JSG 5 rev April 18, 2016

Example 2: Gantry System: Output = Position

>> A = [0,0,1,0;0,0,0,1;0,-19.6,0,0;0,29.4,0,0]

 0 0 1.0000 0
 0 0 0 1.0000
 0 -19.6000 0 0
 0 29.4000 0 0

>> B = [0;0;1;-1]

 0
 0
 1
 -1

>> C = [1,0,0,0]

C =

 1 0 0 0

Q and R are tools you can adjust to get the response you want. Trying different weightings to see which ones
speed up the system the most:

All Weights 1.000:
>> Q = diag([1,1,1,1]);
>> R = 1;
>> H = lqr(A', C', Q, R)';
>> eig(A - H*C)

 -0.9872 + 0.4962i slowest pole
 -0.9872 - 0.4962i
 -5.0521
 -5.7288

Weight position (x) with 1000:

>> Q = diag([1e3,1,1,1]);
>> H = lqr(A', C', Q, R)';
>> eig(A - H*C)

 -31.6228
 -0.0380 slowest pole - got worse
 -5.4224 + 0.0570i
 -5.4224 - 0.0570i

Weight angle with 1000:
>> Q = diag([1,1e3,1,1]);
>> H = lqr(A', C', Q, R)';
>> eig(A - H*C)

 -9.6826
 -4.8534 + 6.3666i
 -4.8534 - 6.3666i
 -0.0569 slowest pole - got worse

NDSU LQR Observers ECE 463

JSG 6 rev April 18, 2016

Weight velocity (sx) with 1000:

>> Q = diag([1,1,1e3,1]);
>> H = lqr(A', C', Q, R)';
>> eig(A - H*C)

 -4.0134 + 3.9521i slowest pole: better!
 -4.0134 - 3.9521i
 -5.6431
 -5.1940

Weight angular velocity with 1000:

>> Q = diag([1,1,1,1e3]);
>> H = lqr(A', C', Q, R)';
>> eig(A - H*C)

 -2.2718 + 3.3054i slowest pole
 -2.2718 - 3.3054i
 -6.0924 + 1.2055i
 -6.0924 - 1.2055i

Weighting velocity seems to work best, so let Q = diag([1, 1, 1000, 1])

>> Q = diag([1,1,1e3,1]);
>> R = 1;
>> H = lqr(A', C', Q, R)'

 18.8640
 -57.8416
 177.4249
 -313.5820

>> eig(A - H*C)

 -4.0134 + 3.9521i
 -4.0134 - 3.9521i
 -5.6431
 -5.1940

The plant is unstable, so the open-loop response will take off to infinity. Regardless, the observer states do
converge - even if the plant isn't.

>> A8 = [A, zeros(4,4);H*C, A-H*C];
>> B8 = [B; B];
>> C8 = eye(8,8);
>> D8 = zeros(8,1);
>> X0 = [0.5;1;1.5;2; 0;0;0;0];
>> t = [0:0.001:1]';
>> y8 = step2(A8, B8, C8, D8, X0, t);
>> plot(t,min(10,max(-10, y8)))

NDSU LQR Observers ECE 463

JSG 7 rev April 18, 2016

Plant and Observer States for an Open-Loop Step Response:

If you add full-state feedback, the system will be stabile and you can watch the observer converge:

>> Q = diag([1000,0,0,0]);
>> R = 1;
>> Kx = lqr(A, B, Q, R);
>> eig(A-B*Kx)

 -5.3273 + 2.4049i
 -5.3273 - 2.4049i
 -2.8173 + 1.0648i
 -2.8173 - 1.0648i

>> Kx

 -31.6228 -164.2922 -29.5050 -45.7942

>>
>> A8 = [A, -B*Kx ; H*C, A-B*Kx-H*C];
>> DC = -C*inv(A - B*Kx)*B

 -0.0316

>> Kr = 1/DC

 -31.6228

The combined system is then

⎡

⎣
⎢

sX
sX

⎤

⎦
⎥ =

⎡

⎣
⎢

A −BKx

HC A − BKx −HC
⎤

⎦
⎥
⎡

⎣
⎢

X
X
⎤

⎦
⎥ +

⎡

⎣
⎢

BKr

BKr

⎤

⎦
⎥R

NDSU LQR Observers ECE 463

JSG 8 rev April 18, 2016

>> A8 = [A, -B*Kx;H*C, A-H*C-B*Kx];
>> B8 = [B*Kr; B*Kr];
>> C8 = [1,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0;0,0,0,0,1,0,0,0;0,0,0,0,0,1,0,0];

 1 0 0 0 0 0 0 0 position
 0 1 0 0 0 0 0 0 angle
 0 0 0 0 1 0 0 0 position estimate
 0 0 0 0 0 1 0 0 angle estimate

>> D8 = zeros(4,1);
>> X0 = [0.4;0.3;0.2;0.1; 0;0;0;0];
>> y8 = step2(A8, B8, C8, D8, X0, t);
>> plot(t,min(10,max(-10, y8)))>>

Step Response for the Plant, Observer, and Full-State Feedback with Errors in the Inital Estimates of the States

Note that the state estiamtes converge to the actual states. The system doesn't behave well, but it's at least not unstable.

Once the state estimates converge, (X0 is zero meaning no error in the state estimate) the system behaves much
better:

>> y8 = step2(A8, B8, C8, D8, 0*X0, t);
>> plot(t,min(10,max(-10, y8)))

NDSU LQR Observers ECE 463

JSG 9 rev April 18, 2016

Step Response for the Plant, Observer, and Full-State Feedback with No Error in the State Estimates

Observers with Multiple Outputs:
With LQR, you can use multiple outputs just as well. For example, assume you can measure poistion and angle:

>> C = [1,0,0,0 ; 0 1 0 0]

C =

 1 0 0 0 position (x)
 0 1 0 0 angle (q)

>> Q = diag([1,1,1e3,1e3]);
>> R = diag([1,1]);
>> H = lqr(A', C', Q, R)'

 x q
 8.4497 -1.6848
 -1.6848 11.9071
 36.6179 -26.1793
 -8.1168 71.8085

>> eig(A - H*C)

 -3.9395 + 4.1662i
 -3.9395 - 4.1662i
 -6.2388 + 2.5857i
 -6.2388 - 2.5857i

Note that with LQR methods, you can handle two outputs without any problems: the observer gain, H, has two
columns - one for position (x) and one for angle (q)

The step response of the plant plus observer plus full-state feedback is then:

NDSU LQR Observers ECE 463

JSG 10 rev April 18, 2016

>> A8 = [A, -B*Kx;H*C, A-H*C-B*Kx];
>> B8 = [B*Kr; B*Kr];
>> C8 = [1,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0;0,0,0,0,1,0,0,0;0,0,0,0,0,1,0,0]

C8 =

 1 0 0 0 0 0 0 0 position, x
 0 1 0 0 0 0 0 0 angle, q
 0 0 0 0 1 0 0 0 position estiamte xm
 0 0 0 0 0 1 0 0 angle estimate qm

>> D8 = zeros(4,1);
>> y8 = step2(A8, B8, C8, D8, X0, t);
>> plot(t,min(10,max(-10, y8)))

Position (blue and red) and angle (green teal) for the plant and observer with initial error in the state estimates:

If you remove the error, the tracking is better:

>> y8 = step2(A8, B8, C8, D8, 0*X0, t);
>> plot(t,min(10,max(-10, y8)))

NDSU LQR Observers ECE 463

JSG 11 rev April 18, 2016

Step response with no error in the initial state estiamtes: Position (red) and angle (green)

Note that H is

 x q
 8.4497 -1.6848 x update
 -1.6848 11.9071 q update
 36.6179 -26.1793 sx update
 -8.1168 71.8085 sq update

As you would expect

The position sensor mostly updates position and velocity estimates
The angle sensor mostly updates angle and angular velocity estimates

NDSU LQR Observers ECE 463

JSG 12 rev April 18, 2016

Function Step2.m
function [y] = step2(A, B, C, D, X0, t)

T = t(2) - t(1);
[m, n] = size(C);

npt = length(t);

Az = expm(A*T);
Bz = B*T;

X = X0;

y = zeros(npt, m);

y(1,:) = (C*X + D)';

for i=2:npt
 X = Az*X + Bz;
 Y = C*X + D;

 y(i,:) = Y';

 end

end

NDSU LQR Observers ECE 463

JSG 13 rev April 18, 2016

