
LQG Control with Servo Compensators

Servo Compensator:

Plant
U

y

X
Servo-Comp

Z

R

Kx

Kz

Track a constant set-point:

Plant Servo-Compensator

Y

R

XsXU
B

A

C

Kx

Kz

sZ Z

s
⎡

⎣
⎢

X
Z
⎤

⎦
⎥ =

⎡

⎣
⎢

A 0
C 0

⎤

⎦
⎥
⎡

⎣
⎢

X
Z
⎤

⎦
⎥ +

⎡

⎣
⎢

B
0
⎤

⎦
⎥U +

⎡

⎣
⎢

0
−1

⎤

⎦
⎥R

U = −⎡⎣ Kx Kz ⎤⎦
⎡

⎣
⎢

X
Z
⎤

⎦
⎥

s
⎡

⎣
⎢

X
Z
⎤

⎦
⎥ =

⎡

⎣
⎢

A − BKx −BKz

C 0
⎤

⎦
⎥
⎡

⎣
⎢

X
Z
⎤

⎦
⎥ +

⎡

⎣
⎢

0
−1

⎤

⎦
⎥R

NDSU LQG Control with Servo Compensators ECE 463

JSG 1 rev April 1, 2016

Find the feedback gains so that the system has

No error for a step input (assured with the use of a servo compensator)
A 2% settling time of 4 seconds, and
<4% overshoot for a step input

Since the servo-compensator state is just a dummy state of the controller, which you don't care that much about,
make its weighting zero. Since you care about the output, y, design a LQR controller where

y = x4 = ⎡⎣ 0 0 0 1 .
.. 0 ⎤⎦

⎡

⎣
⎢
⎢
⎢

X
. ..
Z

⎤

⎦
⎥
⎥
⎥

y = CxX

Q = Cx
TCx

In SciLab, this results in an error: the system is not observable from that output.
-->Q = 1 * Qy;
-->R = 1;
-->Kx = lqr(A, B, Q, R)
 !--error 998
 internal error, info=4.

When you get an error like that, the math is trying to tell you something. The challenge is trying to figure out
what the math is trying to say....

Since the LQR method is complaining about Q, let's add an identity matrix to keep it happy. Make the weightings
small since we don't care too much about the other states.

 Q = Cx
TC + 10−3I

The resulting control gains and step response are as follows:

-->Q = C5'*C5 + eye(5,5) * 1e-3

 0.001 0. 0. 0. 0.
 0. 0.001 0. 0. 0.
 0. 0. 0.001 0. 0.
 0. 0. 0. 1.001 0.
 0. 0. 0. 0. 0.001

-->Kx = lqr(A, B, Q, R)

 0.0641290 0.1298143 0.1958329 0.2527241 0.0316228

Note that the gains are pretty small. The closed-loop dominant pole is also way too slow:

-->eig(A5 - B5*Kx)

NDSU LQG Control with Servo Compensators ECE 463

JSG 2 rev April 1, 2016

 - 3.5319727
 - 2.3486196
 - 0.9901871
 - 0.1708104
 - 0.0225392 (dominant pole: should be around -1)

To speed up the system, increase the weighting on y by 1000x

-->Q = 1000*C5'*C5 + eye(5,5) * 1e-3

 0.001 0. 0. 0. 0.
 0. 0.001 0. 0. 0.
 0. 0. 0.001 0. 0.
 0. 0. 0. 1000.001 0.
 0. 0. 0. 0. 0.001

-->Kx = lqr(A, B, Q, R)

 1.6015116 4.4849429 9.4975698 15.097135 0.0316228

The gains are bigger - which is expected when you increase the weightings on Q. The dominant pole got worse
however:

-->eig(A5 - B5*Kx)

 - 3.1945132
 - 3.1689866
 - 1.1185062 + 1.3690332i
 - 1.1185062 - 1.3690332i
 - 0.0009995 (dominant pole: worse than before)

As you increase the weightings on the output (y), it keeps getting slower and slower - exactly opposite of what
you'd expect.

Compensator Design (take 2)
What's happening is this. The math is dumb: it doesn't know what the system output is. What the system looks
like mathematically is a 5th order system with the states being

something - something - something - - zdz
dt

Initially, when we set the weight on the servo-state (z) to zero, the system was unobservable through that output.
That makes some sense: if you just watch the speed of your car, you can't determine your position.

With Q, we were telling the control law that you want the system to stabilize while keeping small. Bydz
dt

increasing Q, we were penalizing more and more, resulting in a slower system (meaning was made smallerdz
dt

dz
dt

and smaller like it was supposed to.)

So, instead of weighting the actual system's output, treat the servo-state as the system's output. Then,

NDSU LQG Control with Servo Compensators ECE 463

JSG 3 rev April 1, 2016

Increasing should act like a stiffer spring, speeding up the systemQ = Cz
TCz

Increasing should act like more friction, reducing the overshoot and slowing down the systemQ = Cx
TCx

In Matlab: Start with Cz and Cx:

-->Cz = [0,0,0,0,1]

 0. 0. 0. 0. 1.

-->Cx = [0,0,0,1,0]

 0. 0. 0. 1. 0.

and the corresponding Q matrices:

-->Qz = Cz'*Cz;
-->Qx = Cx'*Cx

First guess, let Q = Qz

-->Q = Qz
-->Kx = lqr(A, B, Q, R)
-->eig(A5 - B5*Kx)

 - 3.5321003
 - 2.3470723
 - 1.0094503
 - 0.2426534 + 0.2462031i dominant poles
 - 0.2426534 - 0.2462031i

The dominant poles are too slow (the real part is smaller than -1). To speed up the system, increase Q to 100:

-->Q = Qz*100;
-->Kx = lqr(A, B, Q, R)
-->eig(A5 - B5*Kx)

 - 3.5332243
 - 2.3236428
 - 1.3382872
 - 0.5353237 + 0.7896661i
 - 0.5353237 - 0.7896661i

This is closer to a 4 second settling time. Increase Q even more:

-->Q = Qz*1e4;
-->Kx = lqr(A, B, Q, R)
-->eig(A5 - B5*Kx)

 - 3.6206066
 - 0.8799431 + 1.801827i
 - 0.8799431 - 1.801827i
 - 2.4786032 + 0.8518153i
 - 2.4786032 - 0.8518153i

NDSU LQG Control with Servo Compensators ECE 463

JSG 4 rev April 1, 2016

Now the system is fast enough. The complex poles result in too much overshoot, however:

G = ss(A5-B5*Kx,Br,C5,0);
y = step(G,t);
plot(t,y,'b',t,Yd,'r');

Desired Step Response (red) and Actual Step Response (blue)

To get rid of the overshoot, increase the weighting on (which is state y)dz
dt

-->Q = Qz*1e4 + Qy*1e0;
-->Kx = lqr(A, B, Q, R)

-->eig(A5 - B5*Kx)
 - 3.6564395
 - 0.8868360 + 1.767468i
 - 0.8868360 - 1.767468i
 - 2.5146141 + 0.8188981i
 - 2.5146141 - 0.8188981i

-->G = ss(A5-B5*Kx,Br,C5,0);
-->y = step(G,t);
-->plot(t,y,'b',t,Yd,'r');

-->Q = Qz*1e4 + Qy*1e2;
-->Kx = lqr(A, B, Q, R)
-->eig(A5 - B5*Kx)

 - 10.304043
 - 3.2092893
 - 1.8753923
 - 0.7474964 + 1.0265077i
 - 0.7474964 - 1.0265077i

-->G = ss(A5-B5*Kx,Br,C5,0);

NDSU LQG Control with Servo Compensators ECE 463

JSG 5 rev April 1, 2016

-->y = step(G,t);
-->plot(t,y,'b',t,Yd,'r');

Desired Step Response (red) and Actual Step Response (blue). Increasing the weight on dz/dt (Qy) reduces the overshoot

Iterating between

Increasing the weight on z to speed up the system and
Increasing the weight on dz/dt to reduce the overshoot

should eventually get closer and closer to the desired response.

NDSU LQG Control with Servo Compensators ECE 463

JSG 6 rev April 1, 2016

