
Optimal Control and the Ricatti Equation

Calculus of Variations with Dynamic Systems
Recall, a function which minimizes the functional

J(x) = ∫a
b F(t,x,x

.
)dt

must also satisfy the Euler Legrange equation

Fx − d
dt(Fx

. ) = 0

Example:  Find x(t) which minimizes the functional

J = ∫0
1
(x2 + x

. 2)dt

subject to the constraings that x(0) = 1, x(1) = 0

Solution:  The Euler Legrange equation gives

F = x2 + x
. 2

Fx − d
dt
(Fx

. ) = 0

2x − d
dt
(2x

.
) = 0

x − ẍ = 0

Using LaPlace notation

(1 − s2)x = 0

Either x = 0 (the trivial solution) or s = {+1, -1}.  The general solution is then

x(t) = aet + be−t

Plugging in the boundary conditions gives

x(0) = 1 = a + b

x(1) = 0 = 2.7183a + 0.3679b

or

a = -0.1565, b = 1.1565

so the funciton which minimizes this funcitonal is

x(t) = −0.1565et + 1.1565e−t
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-->t = [0:0.001:1]';
-->x = -0.1565*exp(t) + 1.1565*exp(-t);
-->plot(t,x);
-->xlabel('Time (t)');
-->ylabel('X');

Optimal path of x(t) with the cost function J = ∫0
1 ⎛
⎝x

2 + x
. 2 ⎞
⎠ dt

Euler Legrange Equation with Two Dependent Variables

If you have two dependent variables:

J = ∫a

b
F(t,x,x

.
,u,u

.
)dt

you have Itwo Euler Legrange equations to solve

Fx − d
dt
(Fx

. ) = 0

Fu − d
dt(Fu

. ) = 0
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Euler Legrange Equation with Contraints:

Finally, if  you have constraints, such as

G(t,x,x
.
,u,u

.
) = 0

you can modify the const functional by adding a Legrange multiplier:

J = ∫a
b (F(t,x,x

.
,u,u

.
) +MG(t,x,x

.
,u,u

.
))dt

You can then solve this functional by plugging in the boundary conditions and the constraint on G(t,x,x').

Example 2:  Find x(t) to minimize

J = ∫0
1
(x2 + u2)dt

subject to the constraints

x
.
= u

x(0) = 1

x(1) = 0

Solution:  Add a Legrange multiplier so that F becomes

F = x2 + u2 +m(x
.
− u)

You now have three sets of Euler LaGrange equations to solve:

i) With respect to x:

Fx − d
dt(Fx

. ) = 0

2x − d
dt
(m) = 2x −m

.
= 0

ii) With respect to u:

Fu − d
dt(Fu

. ) = 0

2u −m = 0

iii) With respect to m:

Fm − d
dt(Fm

. ) = 0

x
.
− u = 0
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Solving:  From ii)

m = 2u

m
.
= 2u

.

From iii)

u = x
.

u
.
= ẍ

Substitute into i)

2x = m
.
= 2u

.
= 2ẍ

or

ẍ = x

or in LaPlace notation

ẍ − x = 0

(s2 − 1)x = 0

This has solutions of

x = 0    ( trivial solution ), or
s = { +1, -1 }

so

x(t) = aet + be−t

Plugging in the constraints

x(0) = 1 = a + b

x(1) = 0 = 2.7183a + 0.3679b

results in

a = -0.1565

b = 1.1565

and

x(t) = −0.1565et + 1.1565e−t

u(t) = x
.
(t) = −0.1565et − 1.1565e−t
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Optimal path for x(t) (blue) and input u(t) (red) for cost function  J = ∫0
1 ⎛
⎝x

2 + u2 ⎞
⎠ dt

Note:  If you change the funcitonal to weight x more heavily, it is driven to zero quicker:

J = ∫0
1
(100x2 + u2)dt

The functional becomes:

F = 100x2 + u2 +m(x
.
− u)

which results in the following three  Euler LaGrange equations:

( partials with respect to x )200x −m
.
= 0

( partials with respect to u )2u −m = 0

( partials with respect to m )x
.
− u = 0

which simplifies to:

ẍ − 100x = 0

or

(s2 − 100)x = 0

s = ±10

meaning

x(t) = ae10t + be−10t

which, after solving for the initial conditions, becomes:

x = 0.000000002e10t + 1e−10t
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Optimal Path for  (blue) and  (red)J = ∫0
1 ⎛
⎝x

2 + u2 ⎞
⎠ dt J = ∫0

1 ⎛
⎝100x2 + u2 ⎞

⎠ dt

Example 3:  Find the functional to minimize

J = ∫a

b
(XTQX + UTRU)dt

subject to the constraint

X
.
= AX + BU

Solution:  The functional becomes with a LaGrange multiplier:

F = (XTQX + UTRU) + 2MT ⎛
⎝AX + BU − X

. ⎞
⎠

The Euler Legrange equations are then

2XTQ + 2MTA − d
dt(−2MT) = 0

M
.

T = XTQ −MTA

M
.
= −QZ − ATM

and

2UTR + 2MTB = 0

RU = −BTM
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U = −R−1BTM

so you have the dyamic system

⎡

⎣
⎢⎢⎢

X
.

M
.
⎤

⎦
⎥⎥⎥ =

⎡

⎣
⎢

A −BR−1BT

−Q −AT

⎤

⎦
⎥
⎡

⎣
⎢

X
M

⎤

⎦
⎥

which can be solved subject to the constraints on X(a) and X(b)

Full-State Feedback Formulation:
Assume that

M = PX

so that the full-state feedback gains are

K = R−1BTP

Then the dynamics become

X
.
= (A − BR−1BTP)X

P
.
X + PX

.
= (−Q − ATP)X

PX
.
= ⎛
⎝−P

.
−Q − ATP⎞⎠ X

This implies that

PA − PBR−1BTP = −P
.
−Q − ATP

or

P
.
= −ATP − PA −Q + PBR−1BTP Algebraic Ricatti equation for

computing the time-varying
feedback gains:  U =-KXK = −R−1BTP

This gives the optimal time-varying feedback gain.  If the feedback gains are to be constants, then

P
.
= 0

and

0 = −ATP − PA −Q + PBR−1BTP Algebraic Ricatti equation you'll see
in most places

K = −R−1BTP
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Example:  For the first-order system

x
.
= u

J = ∫0

∞
(qx2 + ru2)dt

m is

0 = −m2/r + q

or

m = qr

k = q/r

Note that

Only the ratio of q/r matters - not their absolute values.  This is reasonable since U(t) minimizes a
functional.  The minimum of F() will also be the minimum of 10F().
As Q increases, the poles shift left (faster) as the square root of Q
As R incrases, the poles shift right (slower) as the square root of R

Example 4:

x
.
= −x + u

J = ∫0

∞
(x2 + u2)dt

q = 1

r = 1

The Ricatti equation becomes

0 = −ATP − PA −Q + PBR−1BTP

0 = −2p − 1 + p2

p = 0.4142, −2.4142

k = 0.4142 −2.4142

This is a typical result.

P (the Ricatti equation) is a quadratic equation - hence generally there are two solutions
One of these solutions will be a minimum, the other a maximum.  Since the feedback gain of -2.4142
results in an unstable system, that is the wrong solution (the maximum).  Select the one that stabilizes the
system.
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The optimal feedback gain is

k = 0.4142

u = −kx
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