
Pole Placement (Bass Gura)

Definition:
Open-Loop System:  System dynamics with U = 0.

sX = AX

Closed-Loop System:  System dynamics with U = -Kx X

sX = (A − BKx)X

Characteristic Polynomial:

a)  The polynomial with roots equal to the eigenvalues of A
poly(eig(A))

b) The denominator polynomial of the transfer function

Bass Gura Derivation:
Assume a system is controllable.  Can you place the closed-loop poles wherever you like using full-state feedback
as well as set the DC gain from R to Y using the control law? 

U = KrR −KxX
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Problem:  Find Kx and Kr to Place the Poles of the Closed-Loop System and Set the DC Gain from R to Y
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Case 1: Controller Canonical Form:
Assume the system is in controller canonical form with a characteristic polynomial (i.e. the denominator of the
transfer function) of 

P(s) = s4 + a3s3 + a2s2 + a1s + a0

Find the feedback gains so that the characteristic polynomial is equal to a desired polynomial:

Pd(s) = s4 + b3s3 + b2s2 + b1s + b0

The solution is fairly easy to see in state-space form.  Since we assume the system is in controller canonical form,
the plant dynamics are:
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With full-state feedback, this becomes

U = −⎡⎣ k0 k1 k2 k3 ⎤⎦X

or, substituting

sX =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

0 1 0 0
0 0 1 0
0 0 0 1

−a0 − k0 −a1 − k1 −a2 − k2 −a3 − k3
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⎥
⎥
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⎥
⎥
X

The characteristic polynomial of the closed-loop system can be seen by observation to be:

s4 + (a3 + k3)s3 + (a2 + k2)s2 + (a1 + k1)s + (a0 + k0) = 0

which is to be equal to the desired characteristic polynomial:

s4 + b3s3 + b2s2 + b1s + b0 = 0

Matching terms results in the feedback gains being the difference between the desired and open-loop  
characteristic polynomials.

k3 = b3 − a3

k2 = b2 − a2

k1 = b1 − a1

k0 = b0 − a0
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Case 2:  The system is controllable but not in controller canonical form
If this is the case,

First, find a similarity transform, T, which takes you to controller canonical form
Second, find the feedback gains to place the closed-loop poles in controller form
Finally, convert these feedback gains to state-variable form with this similarity transform.

This method is called Bass-Gura or Pole Placement.

Step 1:  Find  a similarity transform which takes you to controller canonical form.  One which does this is

T = T1T2T3

where T1 is the controllability matrix (assume a 4th-order system here):

T1 = ⎡⎣ B AB A2B A3B ⎤⎦

T2 is related to the system's characteristic polynomial

T2 =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

1 b3 b2 b1

0 1 b3 b2

0 0 1 b3

0 0 0 1

⎤

⎦

⎥
⎥

⎥

⎥
⎥

T3 is a flip matrix

T3 =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎦

⎥
⎥

⎥

⎥
⎥

This similarity transform results in the transformed system being

Z = TX

sZ = (T−1AT)Z + (T−1B)U

or

sZ = AzZ + BzU

where (Az, Bz) are in controller canonical form.

Note that since T includes the controllability matrix and T is inverted, the (A, B) must be controllable for this
algorithm to work.

Step 2:  The full-state feedback gains in controller form is the difference between the current and desired
characteristic polynomials
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Open-Loop Characteristic Polynomial:

P(s) = s4 + a3s3 + a2s2 + a1s + a0

Closed-Loop (desired) Characteristic Polynomial:

Pd(s) = s4 + b3s3 + b2s2 + b1s + b0

Feedback Gains:

Kz = ⎡⎣ (b0 − a0) (b1 − a1) (b2 − a2) (b3 − a3) ⎤⎦

Step 3:  Convert back to state-variable form (X) using the similarity transform:

Kx = KzT−1

Step 4:  Check your answer.  The closed-loop system is then

sX = (A − BKx)X

The eigenvalues of ( ) should be where you wanted to place them.A − BK

Step 5:  Set the DC gain from R to Y to be equal to one.  Add in the term Kr R to U

U = KrR −KxX

where R is the reference input (the set point).  With this control law, the closed-loop system is

sX = (A − BKx)X + BKrR

Y = CX
The steady-state (i.e. DC) gain is

sX = 0 = (A − BKx)X + BKrR

Solving for X:

X = −(A − BKx)−1BKrR

resulting in the output, Y, being

Y = −C(A − BKx)−1BKrR

If the DC gain is to be one, then pick Kr so that

−C(A − BKx)−1BKr = 1

The open-loop system plus the feedback control law then looks like the following
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Feedback Control Law to Place the Poles of the Closed-Loop System (Kx) and Set the DC Gain (Kr)

Example 1:  Heat Equation.
Assume a system has the following dynamics:

sX =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

⎤
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⎥
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⎥
⎥
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⎢
⎢
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⎢
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⎥
⎥

⎥

⎥
⎥
U

Find the feedback gain, Kx,  to place the poles of the closed-loop system

U = −KxX

at { -1, -2, -3, -4}

Step 0:  Input the system into Matlab

>> A = [-2,1,0,0; 1,-2,1,0; 0,1,-2,1; 0,0,1,-1]

    -2     1     0     0
     1    -2     1     0
     0     1    -2     1
     0     0     1    -1

>> B = [1;0;0;0]

     1
     0
     0
     0
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Step 1:  Find the similarity transform which takes you to controller canonical form.  

T1 is the controllability matrix:

>> T1 = [B, A*B, A*A*B, A*A*A*B]

     1    -2     5   -14
     0     1    -4    14
     0     0     1    -6
     0     0     0     1

T2 is related to the system's characteristic polynomial

>> P = poly(eig(A))

    1.0000    7.0000   15.0000   10.0000    1.0000

>> T2 = [ P(1:4);  0, P(1:3);  0, 0, P(1:2);  0, 0, 0, P(1)]

    1.0000    7.0000   15.0000   10.0000
         0    1.0000    7.0000   15.0000
         0         0    1.0000    7.0000
         0         0         0    1.0000

T3 is a flip matrix

>> T3 = [0,0,0,1;0,0,1,0;0,1,0,0;1,0,0,0]

     0     0     0     1
     0     0     1     0
     0     1     0     0
     1     0     0     0

With T1, T2, T3, you can create the transform which takes you to controller canonical form:

>> T = T1*T2*T3;
 
>> Az = inv(T)*A*T

         0    1.0000         0         0
         0   -0.0000    1.0000    0.0000
         0    0.0000    0.0000    1.0000
   -1.0000  -10.0000  -15.0000   -7.0000

>> Bz = inv(T)*B;

         0
         0
         0
         1

Yup:   (Az, Bz) are in controller canonical form.
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Step 2:  Find the full-state feedback gains in controller form.  This is the difference between the desired and
open-loop characteristic polynomials:

>> Pd = poly([-1, -2, -3, -4])

     1    10    35    50    24

>> P = poly(eig(A))

     1     7    15    10     1

>> dP = Pd - P

     0     3    20    40    23

>> Kz = dP([5,4,3,2])

    23    40    20     3

Check that Kz is correct:

>> eig(Az - Bz*Kz)

   -4.0000
   -3.0000
   -2.0000
   -1.0000

Yup:  Kz placed the poles of (Az - Bz Kz) where we wanted.

Step 3:  Convert Kz to the gain times the state variables (X)

>> Kx = Kz*inv(T)

    3.0000    5.0000    7.0000    8.0000

>> eig(A - B*Kx)

   -4.0000
   -3.0000
   -2.0000
   -1.0000

The control law which places the closed-loop poles at { -1, -2, -3, -4 } is

U = −KxX

where

Kx = ⎡⎣ 3 5 7 8 ⎤⎦
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Example 2:  Complex Poles
With pole placement, you can place the closed-loop poles anywhere.  For example, find the feedback gain, Kx,
which places the closed-loop poles at

{ -1 + j3,  -1 - j3,  -5 + j2,  -5 - j2 }

Following the previous design...

Step 0:  Input the system (done)

Step 1:  Find the similarity transform which takes you to controller canonical form (done)

Step 2:  Find the feedback gains, Kz, which places the closed-loop poles of the closed-loop system

>> Pd = poly([-1 + j*3,  -1 - j*3,  -5 + j*2,  -5-j*2])

     1    12    59   158   290

>> P = poly(eig(A))

    1.0000    7.0000   15.0000   10.0000    1.0000

>> dP = Pd - P

     0     5    44   148   289

>> Kz = dP([5,4,3,2])

   289   148    44     5

Checking Kz:

>> eig(Az - Bz*Kz)

  -5.0000 + 2.0000i
  -5.0000 - 2.0000i
  -1.0000 + 3.0000i
  -1.0000 - 3.0000i

Yes, Kz places the poles of (Az - Bz Kz) where we want.

Step 3:  Convert Kz to Kx:

>> Kx = Kz*inv(T)

    5.0000   19.0000   61.0000  204.0000

Check Kx:

>> eig(A - B*Kx)

NDSU Pole Placement (Bass Gura) ECE 463

JSG 8 March 3, 2017



  -5.0000 + 2.0000i
  -5.0000 - 2.0000i
  -1.0000 + 3.0000i
  -1.0000 - 3.0000i

Done.  A control law which place the closed-loop poles at { -1 + j3,  -1 - j3,  -5 + j2,  -5 - j2 } is

U = −KxX

Kx = ⎡⎣ 5 19 61 204 ⎤⎦
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