ECE 376 - Homework \#10

Timer1 Capture \& Compare - Due Monday, April 8th

Timer1 Capture

Write a C program to measure your reflex time to 100 ns using Timerl Capture interrupts

- Start the game by pressing RB0. PORTA is turned off when the game starts.
- When pressed, the PIC waits a random time from 4.00 to 7.00 seconds
- After that wait, the lights on PORTA turn on
- The time of the lights turning on is recorded using Capture 1 interrupts
- Run a wire from PORTA to RC2 to record the rising edge
- When the lights turn on, press RB0 again
- The time of RB0 is recorded using Capture 2 interrupts
- Run a wire from RB0 to RC 1 to record the rising edge
- The time delay is your reflex time

1) Give a flow chart for this program

2) Write the C code using Timer1 Capture interrupts
```
// Reflex - measure your reflex time to 100ns
#include <pic18.h>
// Global Variables
unsigned long int TIME1, TIME2, dT, TIME;
const unsigned char MSGO[21] = "Reflex Time ";
// Interrupt Service Routine
void interrupt IntServe(void)
{
    if (TMR1IF) {
            TIME = TIME + 0x10000;
            TMR1IF = 0;
            }
        if (CCP1IF) {
            TIME1 = TIME + CCPR1;
            CCP1IF = 0;
            }
        if(CCP2IF) {
            TIME2 = TIME + CCPR2;
            dT = TIME2 - TIME1;
            CCP2IF = 0;
            }
        }
```

Main Routine

```
while(1) {
    PORTE = 0;
    while(!RB0);
    while(RBO);
    N = (TMR1 % 700);
    PORTE = 0xFF;
    Wait_ms(N*10);
    PORTA = 0xFF;
    while(!RB0);
    PORTA = 0;
    LCD_Move(1,0); LCD_Out(dT, 8, 4);
    Wait_ms(500);
    }
}
```

3) Validate your code

The delay is between 4.00 and 7.00 seconds:
Modify the code to display the wait time (N):

$$
6.460 \mathrm{~s}, 5.950 \mathrm{~s}, 5.450 \mathrm{~s}, 4.050 \mathrm{~s}, 6.630 \mathrm{~s}
$$

All delays were in the range of $4 . .7$ seconds

If you press RB0 two seconds after the light turns on, the time reported is 2.0000000 (ish)

- Time was 1.4760054 seconds (2.00 seconds ish)

If you press RB0 five seconds after the light turns on, the time reported is 5.0000000 (ish)

- 4.9940609 seconds ($5 ., 00$ ish)

It looks like the code is working...
4) Record two or more reaction times.

```
191.9911ms, 203.4317ms, 191.4288ms, 194.5970ms, 183.3016ms
```

From your data, determine

- Your mean reflex time
- The standard deviation of this time, and
- The 90% confidence interval for your reaction time

```
>> A = [191.9911, 203.4317, 191.4288, 194.5970, 183.3016]
A = 191.9911 203.4317 191.4288 194.5970 183.3016
>> Xa = mean(A)
Xa = 192.9500
>> Sa = std(A)
Sa = 7.2268
>> Xa + 2.132*Sa
ans = 208.3575
>> Xa - 2.132*Sa
ans = 177.5426
```

Based upon this data, my reaction time should be in the range of $(\mathbf{1 7 7 . 5 4 m s}, \mathbf{2 0 8 . 3 5 m s}) 90 \%$ of the time.

Timer1 Compare

- Step-by-step programming...
- Can you tell the difference between 329.618 Hz (E4) and 329.288 Hz (0.1% low)?

5) Write a program which plays two notes then pauses for one second:

- 329.618 Hz (E4) plays on RC2 for 500 ms using Timer1 Compare1 interrupts,
- It pauses for 200 ms , then
- 349.228 Hz (F4) plays on RC2 for 500 ms
- It pauses for 1000 ms , then
- Repeats

Check that the two notes play (it should be easy to hear the difference)
yes - easy to tell the difference

Calculations:

$$
\begin{aligned}
& N_{E 4}=\left(\frac{10,000,000}{2 \cdot H z}\right)=15.169 .07 \\
& N_{F 4}=14,317.2941
\end{aligned}
$$

Interrupt:

```
// Interrupt Service Routine
void interrupt IntServe(void)
{
    if (TMR1IF) {
        TIME = TIME + 0x10000;
        TMR1IF = 0;
        }
        if (CCP2IF) {
        if(PLAY) CCP2CON ^= 1;
        CCPR2 += N2;
        CCP2IF = 0;
        }
    }
```

Main Routine

```
while(1) {
    N2 = 15169;
    PLAY = 1;
    Wait_ms(500);
    PLAY = 0;
    Wait_ms(200);
    N2 = 14317;
    PLAY = 1;
    Wait_ms(500);
    PLAY = 0;
    Wait_ms(1000);
    }
```

6) Modify this code so that when you press RB0, the code flips a coin

- $\mathrm{COIN}=\mathrm{TMR} 1 \& 1$ should work
- If the coin is heads, play the same note twice in a row
- If the coin is tails, play note E4 then F4

Check that two notes play, with the second being random (sometimes E4, sometimes F4)

Results:

- Same
- Different
- Same
- Same
- Different

Looks OK

Main Routine (no change in interrupts)

```
while(1) {
    while(!RB0);
    Wait_ms(1000);
    COIN = TMR1 & 1;
    N2 = 15169;
    PLAY = 1;
    Wait_ms(500);
    PLAY = 0;
    Wait_ms(200);
    if(COIN) N2 = 14317;
    else N2 = 15169;
    PLAY = 1;
    Wait_ms(500);
    PLAY = 0;
    Wait_ms(1000);
    }
```

7) Modify this code so that you can then guess if the notes are the same or different

- RB1 means the notes are different
- RB0 means the notes are the same
- After the two notes, the code waits for you to press RB1 or RB0
- If you are correct, a counter is updated and displayed (RIGHT += 1)
- If you are incorrect, a counter is updated and displayed (WRONG += 1)

Check that the code is working:

- Two notes play, with the second being the same or different randomly
- When you press a button, it tallies your correct / incorrect responses accordingly

Notes are random (same or different)

- When the notes are the same,
- RB1 increases RIGHT
- RB0 increases WRONG
- When the notes are different
- RB1 increases WRONG
- RB0 increases RIGHT

With 10 notes, I'm correct 10 / 10 times

From a chi-squared test, I'm not just guessing (I can really hear the difference)

Case	\mathbf{p}	np	\mathbf{N}	chi-squared
right	0.5	5	10	5
wrong	0.5	5	0	5

$\mathrm{p}=0.9984$ (99.84% chance I'm not just guessing)

```
while(1) {
    Wait_ms(1000);
    COIN = TMR1 & 1;
    N2 = 15169;
    PLAY = 1;
    Wait_ms(500);
    PLAY = 0;
    Wait_ms(200);
    if(COIN) N2 = 14317;
    else N2 = 15169;
    PLAY = 1;
    Wait_ms(500);
    PLAY = 0;
    while(PORTB == 0);
    if(RB2) {
        RIGHT = 0;
        WRONG = 0;
        }
    else {
        if( RBO ^ COIN) WRONG += 1;
        else RIGHT += 1;
    }
    LCD_Move(0,8); LCD_Out(RIGHT, 3, 0);
    LCD_Move(1,8); LCD_Out(WRONG, 3, 0);
    }
}
```

8) Modify this code so that it plays

- 329.618 Hz (E4) and
- 329.288 Hz (0.1% low)

Run the experiment 10 or more times and record your correct / incorrect results.

```
        N
        N
void interrupt IntServe(void)
{
    if (TMR1IF) {
        TIME = TIME + 0x10000;
        TMR1IF = 0;
        }
        if (CCP2IF) {
        if(PLAY) CCP2CON ^= 1;
        CCPR2 += N2;
        CCP2IF = 0;
        }
    }
// Subroutines
#include "lcd_portd.c"
    while(1) {
        Wait_ms(1000);
        COIN = TMR1 & 1;
        N2 = 15169;
        PLAY = 1;
        Wait_ms(500);
        PLAY = 0;
        Wait_ms(200);
        if(COIN) N2 = 15184;
        else N2 = 15169;
        PLAY = 1;
        Wait_ms(500);
        PLAY = 0;
        while(PORTB == 0);
        if(RB2) {
            RIGHT = 0;
            WRONG = 0;
            }
        else {
            if( RBO ^ COIN) WRONG += 1;
            else RIGHT += 1;
        }
        LCD_Move(0,8); LCD_Out(RIGHT, 3, 0);
        LCD_Move(1,8); LCD_Out(WRONG, 3, 0);
        }
    }
```


Result:

- Right 8 times
- Wrong 8 times

I'm just guessing (chi-squared score $=0$)

9) Use a chi-squared test to determine if you were guessing or if you could really hear a difference

Just for fun, try 100 clocks (0.65% change)

$$
\begin{array}{ll}
\text { if (COIN) } & \text { N2 }=15269 ; \\
\text { else } & \text { N2 }=15169 ;
\end{array}
$$

With this difference, I got it right 12/12 times (12 right, 0 wrong)

Case	\mathbf{p}	$\mathbf{n p}$	\mathbf{N}	chi-squared
right	0.5	6	12	6
wrong	0.5	6	0	6
		Total:	$\mathbf{1 2}$	

From StatTrek, p=0.99947
There is a $\mathbf{9 9 . 9 4 7 \%}$ chance I'm not just guessing

Try a change of 50 clocks (0.329% change)

$$
\begin{array}{ll}
\text { if (COIN) } & \text { N2 }=15219 ; \\
\text { else } & \text { N2 }=15169 ;
\end{array}
$$

With this difference, I got it right 12/13 times (12 right, 1 wrong)

Case	\mathbf{p}	$\mathbf{n p}$	\mathbf{N}	chi-squared
right	0.5	6.5	12	4.6538
wrong	0.5	6.5	1	4.6538

From StatTrek, p $=0.9972$
There is a $\mathbf{9 9 . 7 2 \%}$ chance I'm not just guessing

Try a change of 25 clocks (0.1648%)
if (COIN) N2 = 15291;

$$
\text { else } \quad \text { N2 }=15169 ;
$$

With this difference, I got it right 13/21 times (13 right, 8 wrong)

Case	\mathbf{p}	$\mathbf{n p}$	\mathbf{N}	chi-squared
right	0.5	11.5	13	0.1957
wrong	0.5	11.5	8	0.1957
		Total:	0.3913	

From StatTrek, with one degree of freedom this corresponds to 0.46838
There is a 46.838\% probability of rejecting the null hypothesis (I'm just guessing)

Try a change of 15 clocks (0.1%)

```
if(COIN) N2 = 15184;
else N2 = 15169;
```

With this difference, I got it right $8 / 16$ times (8 right, 8 wrong)

Case	\mathbf{p}	$\mathbf{n p}$	\mathbf{N}	chi-squared
right	0.5	8	8	0
wrong	0.5	8	8	0
			Total:	0

There is a 0% chance $I^{\prime} m$ not just guessing

Net result: It looks like I can consistently hear a 0.329% difference in frequency (or more)

