
ECE 376 - Homework #9

Timer 0/1/2/3 Interrupts - Due Wednesday, April 3rd

1) Write a C routine using Timer0 interrupts to measure time to 100ns. Using this routine, determine

how long a the following operations in C take:

a) Integer operations

int A, B, C;
A = 5;
B = 7;

C = 2*A + 3*B + 4;

time 197 clocks (19.7us)

b) Floating Point Operations

float A, B, C;
A = 3.14159;
B = 2.71718;

C = 2.1*A + 3.7*B + 4.16;

time = 3409 clocks (340.9us)

c) The time it takes you to press and release RB0 ten times

TRISB = 0xFF;

for(i=0; i<10; i++) { // start
 while(!RB0);
 while(RB0);
 } // end

time = 9,111,380 clocks (911.1380ms)

2) Write a C routine using Timer0 / Timer1 / Tirme2 / Timer3 interrupts to play 4 notes at the same time

when you press button RB0.. RB3 at the same time (each note plays if its input button is pressed)

Input Pin RB0 RB1 RB2 RB3

Output Pin RC0 RC1 RC2 RC3

Note F2 G2 A2 B2

Frequency (Hz) 87.307 Hz 97.999 Hz 110.000 Hz 123.471 Hz

Interrupt Timer0 Timer1 Timer2 Timer3

N 57,269.18 51,020.93 45,454.54

(A = 12, B = 237, C =

16)

40,495.33

Measured Frequency 87.40 98.11 110.0 123.6

Error (%) +0.10645% +0.1133% 0% +0.1045%

T2CON = 0x5F

7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1

A = 12 C = 16

Interrupt Service Routine:

void interrupt IntServe(void)
{
 if (TMR0IF) {
 TMR0 = -57269 + 25;
 RC0 = !RC0;
 TMR0IF = 0;
 }
 if (TMR1IF) {
 TMR1 = -51020 + 32;
 RC1 = !RC1;
 TMR1IF = 0;
 }
 if (TMR2IF) {
 RC2 = !RC2;
 TMR2IF = 0;
 }
 if (TMR3IF) {
 TMR3 = -40495 + 41;
 RC3 = !RC3;
 TMR3IF = 0;
 }
 }

Three-Phase Sine Wave

Write a program to output the positive votlage for a 3-phase sine wave using Timer interrupts

Timer2 interrupt triggers every 1ms and sets pins RC0 (phase A), RC1 (B), and RC2 (C)

When Timer2 triggers, it sets up a Timer0/1/3 interrupt nA/nB/nC clocks in the future

- Timer0 interrupt then clears RC0 (setting the pulse width of phase A)

- Timer1 interrupt then clears RC1 (setting the pulse width of phase B)

- Timer3 interrupt then clears RC2 (setting the pulse width of phase C)

The pulse width is determined by nA / nB / nC

- 100 = 1%

- 9900 = 99%

The main routine is responsible for setting the values of NA, NB, and NC

0%

100%

A B C

0s 3s 6s

A B C

3) Give a flow chart for this program

There should be five flow charts (one for each interrupt and one for the main routine)

Start

Initialize I/O

Initialize

Interrupts

reset every 1ms

Set RC0/1/2

Increment Time

Set up T0/T1/T3

Interrupts

Exit

Timer2 Timer0 Timer1 Timer3

Clear RC0

Exit

Clear RC1

Exit

Clear RC2

Exit

set values

of pulse widths

Display on

LCD

4) Write the corresponding C code

For phase A

The zero crossings are at 0 and 1500ms

The height is 9999 (99.99%)

Na = 0.0178(t)(1500 − t)

Na = 1.778
t

10

150 −

t

10

Phase B is 120 degrees delayed

Phase C is 240 degrees delayed

Intertrupt Service Routine:

void interrupt IntServe(void)
{
 if (TMR0IF) {
 RC0 = 0;
 TMR0IF = 0;
 }
 if (TMR1IF) {
 RC1 = 0;
 TMR1IF = 0;
 }
 if (TMR2IF) {
 if(Na > 0) RC0 = 1;
 if(Nb > 0) RC1 = 1;
 if(Nc > 0) RC2 = 1;
 TMR0 = -Na;
 TMR1 = -Nb;
 TMR3 = -Nc;
 Time += 1;
 if(Time >= 3000) Time = 0;
 TMR2IF = 0;
 }
 if (TMR3IF) {
 RC2 = 0;
 TMR3IF = 0;
 }
 }

Main Routine (option #1: using formulas for a parabolic sine wave)

 while(1) {
 Xa = 0.1*Time;
 if(Xa < 150) Na = 1.6*Xa*(150-Xa);
 else Na = 0;
 Xb = Xa - 100;
 if(Xb < 0) Xb += 300;
 if(Xb < 150) Nb = 1.6*Xb*(150-Xb);
 else Nb = 0;
 Xc = Xa - 200;
 if(Xc < 0) Xc += 300;
 if(Xc < 150) Nc = 1.6*Xc*(150-Xc);
 else Nc = 0;
 }

Option #2: Using a look-up table.

Step 1: Generate a 1/2 rectified sine wave with 30 entries (30 is an arbitrary number)

>> N = [0:29]';
>> Y = sin(2*pi*N/30);
>> Y = max(0,Y);
>> Y = floor(9900*Y);

In Code, walk through the table (without interpolation):

TABLE = [0, 2058, 4026, 5819, 7357, 8573, 9415, 9845, 9845,9415,8573, 7357, 5819,
4026, 2058, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

 while(1) {
 N = (0.01 * Time) % 30;
 Na = TABLE(N)
 Nb = TABLE((N+10)%30);
 Nc = TABLE((N+20)%30);
 }

Walk through the table (with interpolation)

note: It would be more efficient to stick to powers of 2 (64 entries in the table, 2048 points per cycle, etc)

int Interpolate(unsigned int Time) {
 unsigned int N, PWM;
 float k

// N goes 0..29
 N = (0.01 * Time) % 30;
// k is the fraction 0..99
 k = (Time % 100) / 100;
 PWM = (1-k)*TABLE[N] + k*TABLE[(N+1)%30];
 return(PWM)
 }

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

Without Interpolation

With Interpolation

5) Verify the interrupts are working

If nA = 1000 (10%), you read 0.50V on RC0 with multimeter (or 10% on an oscilloscope)

If nB = 2500 (25%), you read 1.25V on RC1

If nC = 8000 (80%) you read 4.00V on RC2

Timer2 kicks in every 1.00ms

Channel A (yellow)

Frequency = 1.000kHz (set by Timer2)

Pulse Width = 106us (should be 100us)

Channel B (blue)

Frequency = 1.000kHz (set by Timer2)

Pulse Width = 257us (should be 250us)

Looks like it's working, but the pulse width is 6us or 7us too long (60 or 70 clocks)

6) Demo: Demonstrate a 3-phase rectified sine wave with a period of 3 seconds

Phase A cycles from 0% to 100% then back to 0%

Phase B lags phase A by 120 degrees

Phase C lags phase A by 240 degrees

