
Difference Equations and Convolution

Background

A differential equation is a function which

Exists for all time (i.e. is an analog signal), and
Is of the form

d3y

dt3
+ a2

d2y

dt2
+ a1

dy

dt
+ a0 = b3

d3x

dt3
+ b2

d2x

dt2
+ b1

dx

dt
+ b0x

A difference equation is a function which

Exists only at discrete times (k = 0, 1, 2, ...), and
Is of the form

yk+3 + a2yk+2 + a1yk+1 + a0yk = b3xk+3 + b2xk+2 + b1xk+1 + b0xk

Examples of difference equations are:

Car Loan:

At month 0 (k=0),. borrow $10,000
Each month, the loan gains 1% (12% interest per year - really bad loan)
Each month, you pay $100.

The amount you owe each month is

 yk = 1.01yk−1 − 100

Software Program:

Every 10ms, you measure temperature (xk)
To reduce noise, average the last 3 measurements

yk = 1

3
(xk + xk−1 + xk−2)

Markov Chain:

Suppose you're playing a tennis match. The probability of winning any given game is 60%. To with the match,
you have to be up by 2 games.

If you let the states be

NDSU Difference Equations and Convolution ECE 343

JSG 1 June 20, 2018

X =


















up 2 games

up 1 game

tied

down 1 game

down 2 games


















Then the probability of being at state X at time k is

Xk =















1 0.6 0 0 0

0 0 0.6

0.4 0.6

0.4 0

0.4 1














Xk−1

For example, if you were initially tied, there is a 60% change you'll be +1 after one game, 40% change you'll be
-1 after one game

Xk =















1 0.6 0 0 0

0 0 0.6 0 0

0 0.4 0 0.6 0

0 0 0.4 0 0

0 0 0 0.4 1





























0

0

1

0

0














=















0

0.6

0

0.4

0















Our present tools don't work well for such systems. We need a new tool.

Microprovcesor Control

Suppose a microprocessor is driving a dynamic system. For the sake of simplicity, assume the microprocessor
updates its output every 100ms and the dynamic system is an RC filter:

uP

Vout

gnd

3333

10uF

V1V0

NDSU Difference Equations and Convolution ECE 343

JSG 2 June 20, 2018

By voltage division, the voltage at V1 will be

V1(s) = 


1/Cs

R+1/Cs


V0(s)

V1 = 


3

s+3

V0

If the mircoprocessor outputs 1V for 100ms (one clock for the microprocessor), then for the first 100ms, V1 will
be

V1 = 


3

s+3





1−e−0.1s

s



v1(t) = (1 − e−3t)u(t) − (1 − e−3(t−0.1))u(t − 0.1)

v1(t) for a 100ms pulse from the microprocessor.

Note that, relative to the microprocessor, this is a discrete-time system: all the microprocessor sees is the voltage
at the sampling times (shown by the blue dots). Relative to the microprocessor, v1(t) looks like:

V1 at time k, where k is the sample number (t = k*T)

NDSU Difference Equations and Convolution ECE 343

JSG 3 June 20, 2018

Discrete-Time Convolution

For discrete-time systems, the delta function is defined as

δ(k) =





1 k = 0

0 otherwise

This corresponds to the microprocesor outputting 1V for one sample (100ms) in the previous example. The
impulse response is the response of a dynamic system to an impulse function. The previous bar graph is likewise
the impulse response of the RC filter.

Impulse Response, h(k)

Suppose the input was something other than an impulse. Like we did with LaPlace transforms, you can
determine x(k) in terms of the delta function as

x(k) = Σ
n

x(n)δ(k − n)

Explanation:

x(n) is the function we're trying to represent.

 is a delta function, delayed by n samples.δ(k − n)
When n = 0, you pick off x(0)
As n increases, the delta function sweeps right, picking off each value of x(k)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

1.2

x(n)

delta(n-k)

sweeps right

as k increases

k=3

NDSU Difference Equations and Convolution ECE 343

JSG 4 June 20, 2018

This is also known as discrete time convolution:

x(k) = x(k) ∗ ∗δ(k)

x(k) = Σ
n

x(n)δ(k − n)

A function convolved with a delta function returns that function.

The function whose impulse response is is one (i.e. a wire)δ(k)

δ(k) = 1 ⋅ δ(k)

This means that if you short the input to the output, the output will equal the input (duh).

Suppose you connect the input to the output with something whose impulse response is h(k), as in the RC filter
from before. Then, the output will be

y(k) = Σ
n

x(n)h(k − n)

It works a little better to swap the order:

y(k) = Σ
n

h(n)x(k − n)

For example, suppose the output of the microprocessor was u(k)

x(k) = u(k) =





1 k ≥ 0

0 otherwise

Then

y(k) = Σ
n

h(n)u(k − n)

Graphically, this is

The impulse function, h(n)
Multiplied by u(n), flipped (minus n), delayed by k

NDSU Difference Equations and Convolution ECE 343

JSG 5 June 20, 2018

-13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19
0

0.05

0.1

0.15

0.2

0.25

0.3

-13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19
0

0.2

0.4

0.6

0.8

1

1.2

Sweeps Right

u(-(n-k))

h(n)

k=0

y(k) is the sum of h(n), multiplied by u(-(n-k)) a.k.a. h(k) ** u(k)

Spread-sheets work really well for this type of problem:

Input the impulse response in column #3
Column #4 is column #3 delayed by one
Column #5 is column #4 delayed by one, etc
y(k) is the sum of column #3 to infinity

k y(k) h(k) k(k-1) h(k-2) h(k-3) h(k-4) h(k-5)

0 0 0 0 0 0 0 0

1 0.26 0.26 0 0 0 0 0

2 0.44 0.18 0.26 0 0 0 0

3 0.56 0.13 0.18 0.26 0 0 0

4 0.65 0.09 0.13 0.18 0.26 0 0

5 0.71 0.06 0.09 0.13 0.18 0.26 0

6 0.75 0.04 0.06 0.09 0.13 0.18 0.26

7 0.78 0.03 0.04 0.06 0.09 0.13 0.18

8 0.8 0.02 0.03 0.04 0.06 0.09 0.13

9 0.82 0.02 0.02 0.03 0.04 0.06 0.09

10 0.83 0.01 0.02 0.02 0.03 0.04 0.06

11 0.84 0.01 0.01 0.02 0.02 0.03 0.04

12 0.84 0.01 0.01 0.01 0.02 0.02 0.03

13 0.84 0 0.01 0.01 0.01 0.02 0.02

etc. : : : : : : :

NDSU Difference Equations and Convolution ECE 343

JSG 6 June 20, 2018

Doing this in Matlab or by hand is really a pain. We need a better tool.

For continuous time systems, that tool was LaPlace transforms.

Continuous-time convolution becomes multiplication in the LaPlace domain.

For discrete-time systems that tool is z-transforms.

Discrete-time convolution becomes multiplication in the z-domain.

Convolution & Multiplying Polynomials

One sidelight - multiplying polynomials is actually convolution. For example, find the product of

(3 + 4x + 5x2)(6 + 7x + 8x2) = ?

This is the convolution of

[3 4 5] ** [6 7 8]

6 + 7x + 8x2

5x2 + 4x + 3
= 18

6 + 7x + 8x2

5x2 + 4x + 3
= 24x + 21x = 45x

6 + 7x + 8x2

5x2 + 4x + 3
= 30x2 + 28x2 + 24x2 = 82x2

6 + 7x + 8x2

5x2 + 4x + 3
= 35x3 + 32x2 = 67x3

6 + 7x + 8x2

5x2 + 4x + 3
= 40x4

answer

(3 + 4x + 5x2)(6 + 7x + 8x2) = 18 + 45x + 82x2 + 67x3 + 40x4

NDSU Difference Equations and Convolution ECE 343

JSG 7 June 20, 2018

Convolution and Markov Chains:

Suppose you're playing a game. Each round, there is a

60% chance you'll win
40% chance you'll lose.

The game is 3 rounds. What is the probability you'll have 0, 1, 2, or 3 wins?

Solution: This is the same as multiplying polynomials.

Round #1 After one round, you have a 40% chance of 0 points, 60% chance of one point

0 1 2

0.4X1 0.6 0

points

After round #1, you have a 60% chance of having 1 point, 40% chance of 0 points

Round #2: X2 = X1 ** X1

0 1 2

0.4 0.6

0.6 0.4

0.4 0.6

0.4 0.6

0.6 0.4

0.6 0.4

p = 0.16

p = 0.48

p = 0.36

X1

X1

points

0 points

1 point

2 points

After round #2, the probability of [0, 1, 2] points is [0.16, 0.48, 0.36]

NDSU Difference Equations and Convolution ECE 343

JSG 8 June 20, 2018

Round #3: X3 = X2 ** X1

0 1 2

0.16 0.48

0.6 0.4

X2

X1

0.36

0.16 0.48

0.6 0.4

X2

X1

0.36

0.16 0.48

0.6 0.4

X2

X1

0.36

0.16 0.48

0.6 0.4

X2

X1

0.36

p = 0.064

p = 0.288

p = 0.4320

p = 0.216

points

0 points

1 point

2 points

3 points

After 3 rounds, the probability of [0, 1, 2, 3] points is [0.064, 0.288, 0.432, 0.216]

etc.

NDSU Difference Equations and Convolution ECE 343

JSG 9 June 20, 2018

