Circuit Analysis with Forcing Functions

Background

Last lecture covered circuit analysis with LaPlace transforms when there are

- Initial conditions, and
- No input.

Today, let's look at circuit analysis when you have

- Zero initial conditions, and
- A non-zero input.

This is equivalent to having an in put which is zero for $t<0$

$$
v_{i n}(t)=f(t) u(t)
$$

Since the input is zero for $\mathrm{t}<0$, at $\mathrm{t}=0$, the states should all be zero.

Again, let's use state-space. It's also easier to explain through examples.

Example 1: 2-Stage RC Filter.

Find $\mathrm{y}(\mathrm{t})$ assuming a step input:

$$
v_{0}(t)=u(t)
$$

2-Stage RC Filter with an input, Vo
The procedure is almost identical to the previous solution, only now with

- Initial conditions are zero, and
- There is an input, V0

Step 1: Define the system states.

This is the voltage across the capacitors and the current through inductors. This defines the energy in the system.

$$
X=\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

Step 2: Define the change in energy in terms of the input and the system states

$$
\begin{aligned}
& I_{1}=0.01 \cdot s V_{1}=\left(\frac{V_{0}-V_{1}}{10}\right)+\left(\frac{V_{2}-V_{1}}{10}\right)+\left(\frac{0-V_{1}}{100}\right) \\
& I_{2}=0.02 \cdot s V_{2}=\left(\frac{0-V_{2}}{100}\right)+\left(\frac{V_{1}-V_{2}}{10}\right)
\end{aligned}
$$

Group terms:

$$
\begin{aligned}
& s V_{1}=-21 V_{1}+10 V_{2}+10 V_{0} \\
& s V_{2}=5 V_{1}-5.5 V_{2}
\end{aligned}
$$

Step 3: Place in matrix (state-space) form

$$
\begin{aligned}
& s\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{cc}
-21 & 10 \\
5 & -5.5
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+\left[\begin{array}{c}
10 \\
0
\end{array}\right] V_{0} \\
& Y=V_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+[0]
\end{aligned}
$$

Solve for the transfer function from V0 to Y in Matlanb:

```
A = [-21,10 ; 5, -5.5]
        -21.0000 10.0000
        5.0000 -5.5000
B = [10; 0]
    10
    0
C = [0,1];
D = 0;
G = ss(A,B,C,D);
G(s) = --------------------
```

At this point you can solve for $\mathrm{Y}(\mathrm{s})$:

$$
Y(s)=G(s) \cdot V_{0}(s)
$$

If the input is a unit step:

$$
Y(s)=\left(\frac{10(s+26)}{(s+2.759)(s+23.74)}\right)\left(\frac{1}{s}\right)
$$

In Matlab, you can solve using the step function

```
>> t = [0:0.01:3]';
>> y = step(G,t);
>> plot(t,y);
```


$y(t)$ for $v 0(t)=u(t)$. Note that $y(t)=0$ for $t<0$

You can also find the output for other inputs, but Matlab doesn't have those functions built in (like the step function). If you have a different input, you need to find $\mathrm{Y}(\mathrm{s})$ and use the impulse command.

Example: Find the response for

$$
v_{0}(t)=\sin (4 t) u(t)
$$

Solution: Find the LaPlace transfer for $\mathrm{v}_{0}(\mathrm{t})$. From http://tutorial.math.lamar.edu/pdf/Laplace_Table.pdf

$$
\begin{aligned}
& \sin (a t) \leftrightarrow\left(\frac{a}{s^{2}+a^{2}}\right) \\
& \cos (a t) \leftrightarrow\left(\frac{s}{s^{2}+a^{2}}\right)
\end{aligned}
$$

This gives

$$
V_{0}(s)=\left(\frac{4}{s^{2}+16}\right)
$$

$\mathrm{Y}(\mathrm{s})$ is then

$$
\begin{aligned}
& Y(s)=G(s) \cdot V_{0}(s) \\
& Y(s)=\left(\frac{10(s+26)}{(s+2.759)(s+23.74)}\right)\left(\frac{4}{s^{2}+16}\right)
\end{aligned}
$$

Find $\mathrm{Y}(\mathrm{s})$

```
Vo = tf(4, [1,0,16])
Vo(s) = = 4
Y = G * Vo;
zpk(Y)
                                    200
Y(s)= -----------------------------
t = [0:0.01:5]';
y = impulse(Y,t);
t1 = [-1:0.01:5]';
Vo = sin(4*t1) .* (t1>0);
plot(t,y,'b',t1,Vo,'r')
```


$y(t)$ (blue) and vo(t) (red) for a 4 rad/sec sine wave input.
Note that $\mathrm{y}(\mathrm{t})=0$ for $\mathrm{t}<0$.

Example 2: 5-stage RC filter.

Find V5(t) assuming $v_{0}(t)=u(t)$

Again, this follows the previous analysis fairly closely - except that now you have

- No initial conditions, and
- Input Vo.

Step 1: Define the state variables. The energy in the system is defined by

$$
X=\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right]
$$

Step 2: Define the change in the state variables in terms of the other states

$$
\begin{aligned}
& I_{1}=0.01 s V_{1}=\left(\frac{V_{0}-V_{1}}{10}\right)+\left(\frac{0-V_{1}}{100}\right)+\left(\frac{V_{2}-V_{1}}{10}\right) \\
& I_{2}=0.02 s V_{2}=\left(\frac{V_{1}-V_{2}}{10}\right)+\left(\frac{0-V_{2}}{100}\right)+\left(\frac{V_{3}-V_{2}}{10}\right) \\
& I_{3}=0.03 s V_{3}=\left(\frac{V_{2}-V_{3}}{10}\right)+\left(\frac{0-V_{3}}{100}\right)+\left(\frac{V_{4}-V_{3}}{10}\right) \\
& I_{4}=0.04 s V_{4}=\left(\frac{V_{3}-V_{4}}{10}\right)+\left(\frac{0-V_{4}}{100}\right)+\left(\frac{V_{5}-V_{4}}{10}\right) \\
& I_{5}=0.05 s V_{5}=\left(\frac{V_{4}-V_{5}}{10}\right)+\left(\frac{0-V_{5}}{100}\right)
\end{aligned}
$$

Group terms and solve for the derivative

$$
\begin{aligned}
& s V_{1}=-21 V_{1}+10 V_{2}+10 V_{0} \\
& s V_{2}=5 V_{1}-10.5 V_{2}+5 V_{3} \\
& s V_{3}=3.33 V_{2}-7 V_{3}+3.33 V_{4} \\
& s V_{4}=2.5 V_{3}-5.25 V_{4}+2.5 V_{5} \\
& s V_{5}=2 V_{4}-2.2 V_{5}
\end{aligned}
$$

Place in matrix form

$$
\begin{aligned}
& s\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
-21 & 10 & 0 & 0 & 0 \\
5 & -10.5 & 5 & 0 & 0 \\
0 & 3.33 & -7 & 3.33 & 0 \\
0 & 0 & 2.5 & -5.25 & 2.5 \\
0 & 0 & 0 & 2 & -2.2
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right]+\left[\begin{array}{c}
10 \\
0 \\
0 \\
0 \\
0
\end{array}\right] V_{0} \\
& Y=V_{5}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right]+[0]
\end{aligned}
$$

Step 3: Find the transfer function from V0 to Y:

```
A = [-21,10,0,0,0; 5,-10.5,5,0,0 ; 0,3.333,-7,3.333,0; ; 0,0,2.5,-5.25,2.5 ; 0,0,0,2,-2.2]
\begin{tabular}{rrrrr}
-21.0000 & 10.0000 & 0 & 0 & 0 \\
5.0000 & -10.5000 & 5.0000 & 0 & 0 \\
0 & 3.3330 & -7.0000 & 3.3330 & 0 \\
0 & 0 & 2.5000 & -5.2500 & 2.5000 \\
0 & 0 & 0 & 2.0000 & -2.2000
\end{tabular}
B = [10;0;0;0;0]
    1 0
        0
        0
        0
C = [0,0,0,0,1];
D = 0;
G = SS (A,B,C,D);
```

```
zpk(G)
```


Step 4: Find $\mathrm{y}(\mathrm{t})$ for $\operatorname{Vo}(\mathrm{t})=\mathrm{u}(\mathrm{t})$. This is the step command in Matlab:

```
t = [0:0.01:10]';
y = step(G,t);
plot(t,y);
```


Response for a step input: $\mathrm{vo}(\mathrm{t})=\mathrm{u}(\mathrm{t})$

Repeat for

$$
v_{0}(t)=\cos (t) u(t)
$$

Take the LaPlace transform of vo:

$$
V_{0}(s)=\left(\frac{s}{s^{2}+1}\right)
$$

$\mathrm{Y}(\mathrm{s})$ is then

$$
\begin{aligned}
& Y(s)=G(s) \cdot V_{0}(s) \\
& \gg \operatorname{Vo}=\operatorname{tf}([1,0],[1,0,1]) \\
& \mathrm{Vo}(\mathrm{~s})=\frac{---1}{s^{\wedge} 2+1} \\
& \gg Y=G * V o ; \\
& \gg \operatorname{zpk}(Y)
\end{aligned}
$$

833.25 s


```
Y = impulse(Y, t);
t1 = [-1:0.01:10]';
vo = cos(t1) .* (t1>0);
plot(t,y,'b', t1,vo,'r')
```


$y(t)$ and $v o(t)$ for $v o(t)=\cos (t) u(t)$

Example 3: RLC Circuit

Find $\mathrm{V} 4(\mathrm{t})$ assuming $\mathrm{vo}(\mathrm{t})=\mathrm{u}(\mathrm{t})$

Solution: Follow the same procedure as before but with

- No initial conditions, and
- An input, Vo

Step 1: Define the state variables. These define the energy in the system

$$
X=\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]
$$

Step 2: Define the change in the states.

$$
\begin{aligned}
& v_{1}=0.5 s I_{1}=\left(V_{0}-0.2 I_{1}\right)-V_{2} \\
& i_{2}=0.1 s V_{2}=I_{1}-I_{3} \\
& v_{3}=0.2 s I_{3}=V_{2}-0.3 I_{3}-V_{4} \\
& i_{4}=0.25 s V_{4}=I_{3}
\end{aligned}
$$

Step 3: Rewrite these equations as

$$
\begin{aligned}
& s I_{1}=-0.4 I_{1}-2 V_{2}+2 V_{0} \\
& s V_{2}=10 I_{1}-10 I_{3} \\
& s I_{3}=5 V_{2}-1.5 I_{3}-5 V_{4} \\
& s V_{4}=4 I_{3}
\end{aligned}
$$

Place in matrix form

$$
\begin{aligned}
& s\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-0.4 & -2 & 0 & 0 \\
10 & 0 & -10 & 0 \\
0 & 5 & -1.5 & -5 \\
0 & 0 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]+\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right] V_{0} \\
& Y=V_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]+[0]
\end{aligned}
$$

Solve in Matlab

```
A = [-0.4,-2,0,0; 10,0,-10,0 ; 0,5,-1.5,-5 ; 0,0,4,0]
    -0.4000 
B = [2 ; 0 ; 0 ; 0]
    2
        0
        0
```

```
>> C = [0,0,0,1];
```

>> C = [0,0,0,1];
>> D = 0;
>> D = 0;
>> G = ss(A,B,C,D);
>> G = ss(A,B,C,D);
>> zpk(G)

```
>> zpk(G)
```

$G(s)=-\quad 400$

Find the step response $(v o(t)=u(t))$

```
t = [0:0.01:10]';
y = step(G, t);
plot(t,y)
```


Step Response: $\mathrm{vo}(\mathrm{t})=\mathrm{u}(\mathrm{t})$

Repeat for

$$
\begin{aligned}
& v_{0}(t)=3 \cos (4 t) \\
& V_{0}(s)=\left(\frac{3 s}{s^{2}+16}\right) \\
& \gg V 0=t f([3,0],[1,0,4]) \\
& \mathrm{Vo}=\begin{array}{c}
3 \mathrm{~s} \\

\end{array} \\
& \text { >> } Y=G * V 0 \text {; } \\
& \text { >> y = impulse(Y,t); } \\
& \text { >> t1 = [-2:0.01:10]'; } \\
& \left.\gg \mathrm{vo}=3^{*} \cos (2 * \mathrm{t} 1) \text {.* (} \mathrm{t} 1>0\right) \text {; } \\
& \text { >> plot(t,y,'b',t1,vo,'r') }
\end{aligned}
$$

$y(t)$ (blue) and vo(t) (red) for vo(t) $=3 \cos (2 t) u(t)$

