
Transfer Functions and Forced Response

Background

Given a dynamic system (i.e. a system which is described by a differential equation),

x(t)

G(s)
y(t)

timet=0

input

the method you use to find the output depends upon the input:

If the input is a sinusoid, use phasor analysis.

If the input is periodic in time T, use Fourier transforms.

If the input is non-periodic and causal (zero for t<0), use LaPlace transforms.

Transfer Functions

Assume you have a dynamic system

y + a2y + a1y + a0y = b2x + b1x + b0x

Also assume that x(t) is zero for t<0. In this case, the initial conditions will all be zero, making the LaPlace

transform

 (s3 + a2s2 + a1s + a0)Y = (b2s2 + b1s + b0)X

Solving for Y

Y = 


b2s2+b1s+b0

s3+a2s2+a1s+a0


X

or

Y = G(s)X

where G(s) is called the Transfer Function from X to Y

Note that the fundamental assumption behind LaPlace transforms is that all functions are in the form of

y(t) = a ⋅ est

When you differentiate, you get

dy

dt
= s ⋅ aest = sY

so the notation 'sY' can be read as 'the derivative of y'. A 3rd-order transfer function in 's' means you are looking

at a 3rd-order differential equation.

NDSU Transfer Functions and Forced Response ECE 343

JSG 1 June 17, 2018

Step Response

Given a dynamic system

Y = G(s) ⋅ X

if x(t) is causal (zero for t<0), then you can solve for y(t) by

Finding X(s), the LaPlace transform for x(t),

Multiply G(s) by X(s) to find Y(s), then

Taking the inverse-LaPlace transform to find y(t).

Example 1: Find y(t) assuming x and y are related by

Y = 


3

s+2

X

and

x(t) = u(t)

Solution: Take the LaPlace transform of x(t)

X(s) = 


1
s



Find Y(s)

Y = 


3

s+2





1
s



Take the inverse-LaPlace transform

Y = 


3

s(s+2)


 = (

a
s) + 

b

s+2



a = 


3

(s+2)




s→0

= 1.5

b = 


3
s



s→−2

= −1.5

so

Y = 


1.5
s

 + 

−1.5

s+2



and

y(t) = (1.5 − 1.5e−2t)u(t)

Checking your answer in Matlab:

NDSU Transfer Functions and Forced Response ECE 343

JSG 2 June 17, 2018

t = [0:0.01:5]';

G = tf(3,[1,2])

 3

s + 2

y = step(G,t);

y1 = 1.5 - 1.5*exp(-2*t);

N = [1:10:length(t)]';

plot(t,y,'-',t(N),y1(N),'r+')

Step Response Computed in Matlab (blue) and by hand (red)

Note that the first term is also the phasor solution for a DC input

x(t) = 1

Y(jω) = G(jω) ⋅ X(jω)

Y(j0) = G(j0) ⋅ X(j0)

Y = 


3

s+2



s=0

⋅ 1

Y = 1.5

Phasors tell you the steady-state solution (they assume the input has been on for all time).

LaPlace transforms tell you

The steady-state solution (as time goes to infinity), and

The transient solution (how you go from zero at t=0 to the steady-state solution).

So,

Phasors are actually a special case of LaPlace transforms, and

You can use LaPlace transforms to find the steady-state solution, but it's a lot harder.

NDSU Transfer Functions and Forced Response ECE 343

JSG 3 June 17, 2018

Example 2: Find y(t) given

Y = 


2s+100

s3+7s2+20s+50


X

x(t) = u(t)

Solution: Take the LaPlace transform for x(t)

X =
1
s

Find Y(s)

Y = 


2s+100

s3+7s2+20s+50






1
s



find y(t)

Y(s) = 


2s+100

s(s+1+j3)(s+1−j3)(s+5)




Y(s) = 


2s+100

s(s+1+j3)(s+1−j3)(s+5)


 = (

a
s) + 

b

s+1+j3

 + 

c

s+1−j3

 + 

d

s+5



a = 


2s+100

(s+1+j3)(s+1−j3)(s+5)




s=0

= 2

b = 


2s+100

s(s+1−j3)(s+5)




s=−1−j3

= 1.0349∠ − 128.20

c = 


2s+100

s(s+1−j3)(s+5)




s=−1+j3

= 1.0349∠128.20

d = 


2s+100

s(s+1+j3)(s+1−j3)




s=−5

= −0.72

so

Y(s) = 


2
s

 + 

1.0349∠−128.20

s+1+j3

 + 

1.0349∠128.20

s+1−j3

 + 

−0.72

s+5



and

y(t) = (2 + 2.0699e−tcos (3t + 128.20) − 0.72e−5t)u(t)

Checking in Matlab

G = tf([2,100],[1,7,20,50])

 2 s + 100

s^3 + 7 s^2 + 20 s + 50

NDSU Transfer Functions and Forced Response ECE 343

JSG 4 June 17, 2018

t = [0:0.01:5]';

y = step(G,t);

y1 = 2 + 2.0699*exp(-t) .* cos(3*t + 2.238) - 0.72*exp(-5*t);

N = [1:10:length(t)]';

plot(t,y,'-',t(N),y1(N),'r+')

Step Response Computed in Matlab (blue) and by hand (red)

Again, the steady-state solution is also the phasor solution. At DC

Y(j0) = 


2s+100

s3+7s2+20s+50




s=0

⋅ X(j0)

Y = 2 ⋅ 1

The steady-state solution (as time goes to infinity) is

y(t) = 2

Response for Other Inputs:

Find y(t) for

Y = 


3

s+2

X

x(t) = cos(4t)u(t)

Solution: Find the LaPlace transform for x(t)

X(s) = 


0.5

s+j4

 + 

0.5

s−j4



Putting over a common denominator

NDSU Transfer Functions and Forced Response ECE 343

JSG 5 June 17, 2018

X(s) = 


0.5

s+j4





s−j4

s−j4

 + 

0.5

s−j4





s+j4

s+j4



X(s) = 


s

s2+16




Find Y(s)

Y = 


3

s+2

X

Y = 


3

s+2





s

s2+16




Find y(t)

Y = 


3s

(s+2)(s+j4)(s−j4)


 = 


a

s+2

 + 

b

s+j4

 + 

c

s−j4



a = 


3s

(s+j4)(s−j4)




s=−2

= −0.300

b = 


3s

(s+2)(s−j4)




s=−j4

= 0.3354∠63.430

c = 


3s

(s+2)(s+j4)




s=j4

= 0.3354∠ − 63.430

so

Y = 


−0.300

s+2

 + 

0.3354∠63.430

s+j4

 + 

0.3354∠−63.430

s−j4



and

y(t) = (−0.3e−2t + 0.6708 cos (4t − 63.430))u(t)

Checking in Matlab: Matlab has a step function but it doesn't have a response to a 4 rad/sec cosine input

function. We can still use impulse however.

Y = zpk(0,[-2,j*4,-j*4],3)

 3 s

(s+2) (s^2 + 16)

t = [0:0.01:5]';

y = impulse(Y,t);

y1 = -0.3*exp(-2*t) + 0.6708*cos(4*t - 1.107);

t2 = [-1:0.01:5]';

x = cos(4*t2) .* (t2>0);

plot(t,y,'-',t(N),y1(N),'r+',t2,x,'m')

NDSU Transfer Functions and Forced Response ECE 343

JSG 6 June 17, 2018

Input, x(t) (pink) and output as computed in matlab (blue) and by hand (red)

Note that since x(t) = 0 for t<0, there is jump at t=0. Also note that the steady-state solution matches what you

compute using phasor analysis. At all frequencies,

Y = 


3

s+2

X

Using phasor analysis at 4 rad/sec

Y = 


3

s+2



s=j4

⋅ (1 + j0)

Y = 0.6708∠ − 63.40

which is phasor form for

y(t) = 0.6708 cos (4t − 63.40)

Again, phasor analysis tells you the steady-state portion of the solution of

y(t) = (−0.3e−2t + 0.6708 cos (4t − 63.430))u(t)

NDSU Transfer Functions and Forced Response ECE 343

JSG 7 June 17, 2018

