LaPlace Transform

Discussion

Right now, we're looking at the problem of finding the output of a filter with an input which is not periodic.

Problem: Find the output of a filter (differential equation) which has an input which is not periodic.

One way to solve this problem is convolution:

$$
y(t)=h(t) * * x(t)
$$

This is a really hard way to solve the problem. There has to be a better way.

Recall from phasors, if $\mathrm{x}(\mathrm{t})$ is a pure sine wave, the problem is easy. Using phasor notation:

$$
Y=H \cdot X
$$

If $x(t)$ is periodic, then Fourier transforms let you convert this to a bunch of problems, each of which is a phasor problem. In this case

$$
Y(j \omega)=H(j \omega) \cdot X(j \omega)
$$

where ω is at harmonics of the fundamental frequency

$$
\omega=n \omega_{0}=\left(\frac{2 \pi n}{T}\right)
$$

If you work in the frequency domain,
Output = Gain t* Input

LaPlace transforms are similar to Fourier transforms - only they work for non-periodic inputs. Recall that the Fourier transform for a function, $\mathrm{x}(\mathrm{t})$, is

$$
X_{n}=\frac{1}{T} \int_{T} x(t) \cdot e^{-j n \omega_{0} t} \cdot d t
$$

and its inverse Fourier transform was

$$
x(t)=\sum_{n} X_{n} e^{j n \omega_{0} t}
$$

With LaPlace transforms we're dealing with inputs which are not periodic and are zero for $\mathrm{t}<0$ (i.e. the system is causal: the output can't happen before the input.)

The basic assumption behind Fourier transforms is that all functions are in the form of

$$
y(t)=a e^{j \omega t}=a e^{j n \omega_{0} t}
$$

This results in differentiation becoming multiplication by jw. With LaPlace transforms, we assume all funcitons are of the form

$$
y(t)=a e^{(\sigma+j \omega)} t=a e^{s t}
$$

With this assumption, Fourier transforms

$$
X_{n}=\frac{1}{T} \int_{T} x(t) \cdot e^{-j n \omega_{0} t} \cdot d t
$$

become LaPlace transforms:

$$
X(s)=\int_{-\infty}^{\infty} x(t) \cdot e^{-s t} \cdot d t
$$

The inverse Fourier trasnsform

$$
x(t)=\sum_{n} X_{n} e^{j n \omega_{0} t}
$$

becomes the inverst LaPlace transform:

$$
x(t)=L^{-1}(X(s))=\frac{1}{2 \pi j} \int_{-j \infty}^{+j \infty} X(s) \cdot e^{s t} \cdot d s
$$

Once you convert a system to LaPlace transforms, the output is the gain times the input

$$
Y(s)=H(s) \cdot X(s)
$$

just like it is with Fourier transforms. But first, you need to find the LaPlace transform for the input, $\mathrm{x}(\mathrm{t})$.

LaPlace Transforms for Different Functions:

Delata Function:

$$
\begin{aligned}
& x(t)=\delta(t) \\
& X(s)=\int_{-\infty}^{\infty} e^{-s t} \cdot \delta(t) \cdot d t \\
& X(s)=e^{0}=1
\end{aligned}
$$

The LaPlace transform for a delta function is one

$$
\delta(t) \leftrightarrow 1
$$

Step Function

$$
\begin{aligned}
& x(t)=u(t) \\
& X(s)=\int_{-\infty}^{\infty} e^{-s t} \cdot(u(t)) \cdot d t \\
& X(s)=\int_{0}^{\infty} e^{-s t} \cdot d t \\
& X(s)=\left(\frac{-1}{s} \cdot e^{-s t}\right)_{0}^{\infty}
\end{aligned}
$$

Assuming the function goes to zero as time goes to infinity

$$
X(s)=\frac{1}{s}
$$

The LaPlace transform for a step function is $1 / \mathrm{s}$:

$$
u(t) \leftrightarrow\left(\frac{1}{s}\right)
$$

Decaying Exponential

$$
\begin{aligned}
& x(t)=e^{a t} u(t) \\
& X(s)=\int_{-\infty}^{\infty} e^{-s t} \cdot\left(e^{-a t} u(t)\right) \cdot d t \\
& X(s)=\int_{0}^{\infty} e^{-(s+a) t} \cdot d t \\
& X(s)=\left(\frac{-1}{s+a} \cdot e^{-(s+a) t}\right)_{t=0}^{t=\infty}
\end{aligned}
$$

Assuming the function goes to zero as time goes to infinity

$$
X(s)=\left(\frac{1}{s+a}\right)
$$

The LaPlace transform for a decaying exponential is $\left(\frac{1}{s+a}\right)$

$$
e^{-a t} u(t) \leftrightarrow\left(\frac{1}{s+a}\right)
$$

Damped Sinusoid:

$$
x(t)=a e^{-\sigma t} \cos (\omega t+\theta) u(t)
$$

This is actually a special case of the previous solution. Asume 'a' is complex:

$$
a=\sigma+j \omega
$$

along with it's complex conjugate

$$
a^{*}=\sigma-j \omega
$$

Then, the LaPlace transform is:

$$
X(s)=\left(\frac{r \angle \theta}{s+\sigma+j \omega}\right)+\left(\frac{r \angle-\theta}{s+\sigma-j \omega}\right)
$$

The original time function was

$$
\begin{aligned}
x(t)= & \left(r \cdot e^{j \theta}\right)\left(e^{-(\sigma+j \omega t)}\right)+\left(r \cdot e^{-j \theta}\right)\left(e^{-(\sigma-j \omega t)}\right) \\
& =r e^{-\sigma t} \cdot\left(e^{j(\omega t-\theta)}+e^{-j(\omega t-\theta)}\right) \\
& =2 r e^{-\sigma t} \cdot\left(\frac{e^{j(\omega t-\theta)}+e^{-j(\omega t-\theta)}}{2}\right) \\
& =2 r \cdot e^{-\sigma t} \cdot \cos (\omega t-\theta) u(t)
\end{aligned}
$$

The LaPlace transform of a damped sinusoid is

$$
2 r \cdot e^{-\sigma t} \cdot \cos (\omega t-\theta) u(t) \leftrightarrow\left(\frac{r \angle \theta}{s+\sigma+j \omega}\right)+\left(\frac{r \angle-\theta}{s+\sigma-j \omega}\right)
$$

Other functions have LaPlace transforms - but these are the main ones you need:

Table of LaPlace Transforms

time domain <-> frequency domain
$\delta(t) \leftrightarrow 1$
$u(t) \leftrightarrow\left(\frac{1}{s}\right)$
$e^{-a t} u(t) \leftrightarrow\left(\frac{1}{s+a}\right)$
$2 r \cdot e^{-\sigma t} \cdot \cos (\omega t-\theta) u(t) \leftrightarrow\left(\frac{r \angle \theta}{s+\sigma+j \omega}\right)+\left(\frac{r \angle-\theta}{s+\sigma-j \omega}\right)$

