Natural and Impulse Response

Given a differential equation, such as

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=4 x
$$

The natural response is $\mathrm{y}(\mathrm{t})$ when

- $x(t)=0$
- y has an initial condition at $\mathrm{t}=0$

The impulse response is $y(t)$ when

- y is zero at $t=0$,
- $x(t)=0$ for $t>0$, and
- $x(t)$ is an impulse at $t=0$

The response for $\mathrm{x}(\mathrm{t})$ not equal to zero comes next lecture.

Natural Response:

Previously, we looked at how to solve differential equations which have periodic inputs. Now let's look at solving differential equations with inputs which are not periodic. The most common inputs are

- No Input: Let the circuit behave naturally with nothing other than its initial conditions.
- An impulse input: This models a car hitting a pot-hole, quickly turning a switch on and off.
- A step response: This models turning on a motor and leaving it on, powering up a DC circuit and leaving it on.
Let's start with the simplest case: solving a differential equation with no input. The only thing powering the circuit are the initial conditions (termed the natural response.)

For example, solve the following differential equation

$$
\frac{d y}{d t}+3 y=0
$$

with the initial condition

$$
y(0)=5
$$

To solve this, first guess the form of the solution. Assume (i.e. guess) $y(t)$ is of the form

$$
y(t)=a \cdot e^{s t}
$$

Plugging into the differential equation results in

$$
\begin{aligned}
& s \cdot a e^{s t}+3 \cdot a e^{s t}=0 \\
& (s+3) \cdot a e^{s t}=0
\end{aligned}
$$

Either

- $\mathrm{a}=0$ (the trivial solution), or
- $\mathrm{s}=-3$

The former doesn't allow us to meet the initial condition, so assume the latter. This means $y(t)$ is of the form

$$
y(t)=a \cdot e^{3 t}
$$

Plugging in $\mathrm{s}=0$

$$
y(0)=5=a
$$

gives us $\mathrm{y}(\mathrm{t})$

$$
y=5 e^{-3 t}
$$

Solution to $\mathrm{y}(\mathrm{t})$ given an initial condition of $\mathrm{y}(0)=5$.

Note that for a 1st-order differential equation, you need one initial condition. For an Nth-order differential equation, you need N initial conditions.

Example 2: Find $\mathrm{y}(\mathrm{t})$ assuming $\mathrm{y}(\mathrm{t})$ satisfies the following differential equation

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=0
$$

along with the initial conditions

$$
\begin{aligned}
& y(0)=5 \\
& \frac{d y(0)}{d t}=0
\end{aligned}
$$

To solve, again assume $y(t)$ is in the form of

$$
y(t)=a \cdot e^{s t}
$$

Substituting into the differential equation results in

$$
s^{2} \cdot a e^{s t}+3 s \cdot a e^{s t}+2 \cdot a e^{s t}=0
$$

$$
\left(s^{2}+3 s+2\right) \cdot a e^{s t}=0
$$

Either

- $a=0$ (the trivial solution), or
- $s^{2}+3 s+2=0$

The latter has solutions of

$$
s=-1 \text { or }-2
$$

meaning

$$
y(t)=a \cdot e^{-t}+b \cdot e^{-2 t}
$$

Plugging in the two initial conditions

$$
\begin{aligned}
& y(0)=5=a+b \\
& \dot{y}(0)=0=-a-2 b
\end{aligned}
$$

Solving

$$
\begin{aligned}
& a=10 \\
& b=-5
\end{aligned}
$$

so the answer is:

$$
y(t)=10 e^{-t}-5 e^{-2 t}
$$

Solution to a 2nd-order differential equation with $y(0)=5$ and $d y / d t=0$ at $t=0$.

Delta Function: $\delta(t)$

The delta function is a strange function that's really useful. It can be defined as the derivative of a unit step:

$$
\begin{aligned}
& u(t)= \begin{cases}0 & t<0 \\
1 & t>0\end{cases} \\
& \delta(t)=\frac{d}{d t}(u(t))
\end{aligned}
$$

Or, it's the function whose integral is the unit step: $u(t)$

$$
\int_{-\infty}^{\infty} \delta(t) d t=u(t)
$$

You can also think of the delta function as a small rectangle at $\mathrm{t}=0$ whose area is one.

In the limit as the width goes to zero, the height goes to infinity, and you have a delta function.

$$
\delta(t)=\lim _{\varepsilon \rightarrow 0}\left\{\begin{array}{cc}
0 & t<\varepsilon \\
\frac{2}{\varepsilon} & |t|<\varepsilon \\
0 & t>\varepsilon
\end{array}\right.
$$

which has the symbol of an arrow to indicate the height is infinity and the width is one.

Symbol for $\delta(t)$
The delta function has several useful properties:
$y(0)$: You can determine the initial value of $y(t)$ using a delta function:

$$
\int_{-\infty}^{+\infty} y(t) \cdot \delta(t) \cdot d t=y(0)
$$

$y(t)$: You can determine the value of $y(t)$ using a delta function:

$$
\int_{-\infty}^{+\infty} y(\tau) \cdot \delta(t-\tau) \cdot d \tau=y(t)
$$

Note that $\delta(t)=0$ everywhere except with $t=0$. Likewise, the only value of $y(t)$ that matters in the above equation is $y(T)$.

Impulse Response

The impulse response to a differential equation is the response when

$$
x(t)=\delta(t)
$$

For $\mathrm{t}<0, \delta(t)=0$. This results in the initial value for $\mathrm{y}(\mathrm{t})$ to also be zero for $\mathrm{t}<0$.

For $t>0, \delta(t)=0$, resulting in a system which is identical the out previous analysis for finding the natural response of a system.

At $\mathrm{t}=0$, the impulse function sets the initial condition, $\mathrm{y}(0)$ and its derivatives.

Example: Find the impulse response of the following system:

$$
\begin{aligned}
& \frac{d y}{d t}+3 y=2 x \\
& x(t)=\delta(t)
\end{aligned}
$$

Solution: For $\mathrm{t}<0, \mathrm{x}(\mathrm{t})=0$ and

$$
y(t)=0 \quad t<0
$$

For $\mathrm{t}=0$, integrate both sides from $\mathrm{t}=-\varepsilon$ to $\mathrm{t}=+\varepsilon$

$$
\begin{aligned}
& \int_{-\varepsilon}^{+\varepsilon}\left(\frac{d y}{d t}+3 y\right) d t=\int_{-\varepsilon}^{+\varepsilon}(2 \delta(t)) d t \\
& y(0)=2
\end{aligned}
$$

For $\mathrm{t}>0, \mathrm{x}(\mathrm{t})=0$. You're just trying to find the natural response like before. The answer is

$$
y(t)=\left\{\begin{array}{cc}
0 & t<0 \\
2 e^{-3 t} & t>0
\end{array}\right.
$$

You can also express this as:

$$
y(t)=2 e^{-3 t} \cdot u(t)
$$

For a 2nd-order differential equation:

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=4 \frac{d x}{d t}+5 x
$$

the impulse response is again a natural response with initial conditions. To get the initial conditions, integrate across $\mathrm{t}=0$:

$$
\begin{aligned}
& \int_{-\varepsilon}^{+\varepsilon}\left(\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y\right) d t=\int_{-\varepsilon}^{+\varepsilon}\left(4 \frac{d x}{d t}+5 x\right) d t \\
& \frac{d y}{d t}(0)+3 y(0)=4 x+5
\end{aligned}
$$

Integrate again

$$
\begin{aligned}
& \int_{-\varepsilon}^{+\varepsilon}\left(\frac{d y(0)}{d t}+3 y(0)\right) d t=\int_{-\varepsilon}^{+\varepsilon}(4 x+5) d t \\
& y(0)=4 \\
& \frac{d y}{d t}(0)=5
\end{aligned}
$$

The pattern holds for more and more derivatives. For an nth order differential equation, the coefficients of x tell you the inital conditions:

