Solving Differential Equtions with Fourier Transforms

Background

From phasor analysis, if you have a differential equation, such as

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=4 x
$$

if you assume all functions are in the form of

$$
y(t)=e^{j \omega t}
$$

you can rewrite this differential equation as

$$
(j \omega)^{2} Y+3(j \omega) Y+2 Y=4 X
$$

or write this as a transfer function

$$
\begin{aligned}
& Y=G(j \omega) X \\
& Y=\left(\frac{4}{(j \omega)^{2}+3 j \omega+2}\right) X
\end{aligned}
$$

If $x(t)$ is a sine wave

$$
x(t)=2 \cos (4 t)+3 \sin (4 t)
$$

then replace $\mathrm{x}(\mathrm{t})$ with it's phasor representation

$$
X=2-j 3
$$

and find Y by evaluating the gain, G, at the frequency of $x(t)$

$$
\begin{aligned}
& Y=\left(\frac{4}{(j \omega)^{2}+3 j \omega+2}\right)_{\omega=4} \cdot(2-j 3) \\
& Y=(-0.1647-j 0.1412) \cdot(2-j 3) \\
& Y=-0.7529+j 0.2118
\end{aligned}
$$

Convert back to time to find $y(t)$, (recall that the frequency of the input was $4 \mathrm{rad} / \mathrm{sec}$. The frequency of the output will also be $4 \mathrm{rad} / \mathrm{sec}$)

$$
y(t)=-0.7529 \cos (4 t)-0.2118 \sin (4 t)
$$

This also works if $\mathrm{x}(\mathrm{t})$ contains several frequencies. In this case, use superposition:

- Treat the problem as if there were N separate problems, each with an input, $x(t)$, at a unique frequency
- Find the output at each frequency
- The total outout will be the sum of the outputs at each separate frequency.

If you have a function which is periodic in time T

$$
x(t)=x(t+T)
$$

but is not a sine wave, use your favorite Fourier transform to convert $\mathrm{x}(\mathrm{t})$ into a sum of sine waves

$$
x(t)=\sum c_{n} \cdot e^{j n \omega_{0} t} \quad \text { complex Fourier transform }
$$

or

$$
x(t)=\sum a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \cos \left(n \omega_{0} t\right) \quad \text { sine / cosine Fourier transform }
$$

where ω_{0} is the fundamental frequency of $\mathrm{x}(\mathrm{t})$:

$$
\omega_{0}=\frac{2 \pi}{T}
$$

Now that $\mathrm{x}(\mathrm{t})$ is expressed in terms of sine waves, use superposition to solve for $\mathrm{y}(\mathrm{t})$.

Example:

Find $\mathrm{y}(\mathrm{t})$ given that x and y are related by the following differential equation

$$
\frac{d y}{d t}+3 y=6 x
$$

$\mathrm{x}(\mathrm{t})$ is periodic in 2π

$$
x(t)=x(t+2 \pi)
$$

and

$$
x(t)=\left\{\begin{array}{cc}
1 & 0<t<\pi \\
0 & \pi<t<2 \pi
\end{array}\right.
$$

Solution: The fundamental frequency is one

$$
\omega_{0}=\frac{2 \pi}{T}=1
$$

Step 1: Express $\mathrm{x}(\mathrm{t})$ in terms of it's Fourier transform. From before

$$
x(t)=\frac{1}{2}+\sum_{\mathrm{n} \text { odd }}\left(\frac{1}{j n \pi}\right) e^{j n t}
$$

Step 2: Find the transfer function from X to Y
$(j \omega) Y+3 Y=6 X$
$(j \omega+3) Y=6 X$
$Y=\left(\frac{6}{j \omega+3}\right) X$

Step 3: Use superposition and evaluate at each frequency

Harmonic	Frequency	Xn	$\mathrm{G}(\mathrm{j} \omega)$	Yn
n	$j \omega=j n \omega_{0}$	$\left(\frac{1}{j n \pi}\right)$	$\left(\frac{6}{j \omega+3}\right)$	$G(j \omega) \cdot X_{n}$
0	0	0.5	2.000	1.000
1	j 1	-j 0.3183	$1.800-\mathrm{j} 0.600$	$-0.191-\mathrm{j} 0.573$
2	j 2	0	$1.385-\mathrm{j} 0.923$	0
3	j 3	-j 0.1061	$1.000-\mathrm{j} 1.000$	$-0.106-\mathrm{j} 0.106$
4	j 4	0	$0.720-\mathrm{j} 0.960$	0
5	j 5	-j 0.0637	$0.529-\mathrm{j} 0.882$	$-0.056-\mathrm{j} 0.034$
6	j 6	0	$0.400-\mathrm{j} 0.800$	0
7	j 7	-j 0.0455	$0.310-\mathrm{j} 0.724$	$-0.033-\mathrm{j} 0.014$

Step 4: Convert back to time. Note that

- Each Yn represents $y(t)$ at a different frequency
- You need to double the compex Fourier transform terms to get cosine and sine terms

$$
\begin{aligned}
y(t)= & 1-0.382 \cos (t)+1.146 \sin (t) \\
& -0.212 \cos (3 t)+0.212 \sin (3 t) \\
& -0.112 \cos (5 t)+0.068 \sin (5 t) \\
& -0.066 \cos (7 t)+0.028 \sin (7 t)
\end{aligned}
$$

(You could also use polar form if you like...)

This is actually a lot easier in Matlab:
Step 1: Input the complex Fourier transform for X (taken out to 20 terms)

```
X = zeros (20,1);
for n=1:20
    X(n)=(1-(-1)^n) / (j*2*pi*n);
    end
```

Step 2: Compute $\mathrm{G}(\mathrm{jw})$ at each frequency corresponding to n

```
n = [1:20]';
w0 = 1;
w = n*W0;
G = 6 ./ (j*W + 3);
```

Step 3: Compute $\mathrm{Y}(\mathrm{n})$: Output is gain times input. Note that G and X are 20x1 matricies: the gain and input at each frequency for $\mathrm{n}=1 . .20$

$$
\mathrm{Y}=\mathrm{G} . * \mathrm{X} ;
$$

Also note that you need to use dot-times (element by element multiplication). The dot-notation tells Matlab to treat this as 20 separate problems, not a matrix multiply.

The result is

```
n = [1:20]'
[n, X, G, Y]
```

n	X (n)	$\mathrm{G}(\mathrm{n})$	Y (n)	
1.	- 0.318 i	$1.8-0.6 i$	- 0.191	- 0.573
2.	0	1.385-0.923i	0	
3.	-0.106i	1. - i	-0.106	-0.106
4	0	$0.72-0.96 i$	0	
5.	- 0.064i	0.529-0.882i	-0.056	-0.034
6.	0	$0.4-0.8 i$	0	
7.	- $0.045 i$	$0.31-0.724 i$	- 0.033	- 0.014
8.	0	0.247-0.658i	0	
9.	- $0.035 i$	$0.2-0.6 i$	- 0.021	- 0.007
10.	0	$0.165-0.55 i$	0	
11.	- 0.029i	0.138-0.508i	- 0.015	- 0.004
12.	0	0.118-0.471i	0	
13.	- 0.024i	$0.101-0.438 i$	- 0.011	- 0.002
14.	0	$0.088-0.41 i$	0	
15.	- 0.021i	$0.077-0.385 i$	-0.008	- 0.002
16.	0	$0.068-0.362 i$	0	
17.	- 0.019i	$0.06-0.342 i$	-0.006	- 0.001
18.	0	$0.054-0.324 i$	0	
19.	- 0.017 i	0.049-0.308i	-0.005	- 0.001
20.	0	0.044-0.293i	0	

To plot $\mathrm{y}(\mathrm{t})$, start with the DC term

```
X0 = mean(x)
        0.5
GO = 6 / / (j0 + 3)
YO = G0 * X0
    1.000
```

Now add in all the rest of the terms

```
t = [0:0.001:10]';;
x = 1 * (sin(t) > 0);
y = 0*t + Y0;
for n=1:20
    y = y + 2*real(Y(n))*\operatorname{cos(n*t) - 2*imag(Y(n))*sin(n*t);}
    end
```

```
plot(t,x,t,y)
```


$x(t)$ (blue) and $y(t)$ (red)

In theory, the Fourier transform goes out to infinity. In practice, you only need a few terms to approximate the ouput. This is for two reasons:

First, the Fourier transform tends to have most of its energy in the lower harmonics. If you plot a bar graph of the magnitude of $\mathrm{X}(\mathrm{n})$

```
bar(abs(X))
```


Amplifude of the Fourier coefficients for $\mathrm{x}(\mathrm{t})$

Second, most differential equations act as low pass filters. If you plot the amplitude of $\mathrm{G}(\mathrm{jw})$ vs frequency

Put the two together (output is gain times input) and you get an output which has most of its energy in the lower harmonics

```
bar(abs(Y))
```


Magnitude of the complex Fourier coefficients of $y(t)$

In theory, you need to go out to infinity.
In practice, if you only include a few terms (20 in this case), you've captured most of $\mathrm{y}(\mathrm{t}$)

