Properties of Fourier Transforms

Background

Assume $\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})$, and their Fourier transforms

$$
\begin{aligned}
& x(t)=\sum X_{n} e^{j n \omega_{0} t} \\
& y(t)=\sum Y_{n} e^{j n \omega_{0} t}
\end{aligned}
$$

Linearity:

If you multiply $\mathrm{x}(\mathrm{t})$ by a constant, its Fourier coefficients are multiplied by the same constant

$$
a \cdot x(t)=\sum a X_{n} e^{j n \omega_{0} t}
$$

If you add two functions, the Fourier coefficients add

$$
\begin{gathered}
x(t)+y(t)=\sum X_{n} e^{j n \omega_{0} t}+\sum Y_{n} e^{j n \omega_{0} t} \\
=\sum\left(X_{n}+Y_{n}\right) e^{j n \omega_{0} t}
\end{gathered}
$$

Delay

If $\mathrm{x}(\mathrm{t})$ is delayed by time T, Xn is multiplied by $e^{-n \omega_{0} T}$

$$
\begin{aligned}
e^{-s T} \cdot x(t) & =e^{-s T} \cdot \sum X_{n} e^{j n \omega_{0} t} \\
= & \sum X_{n} \cdot e^{-s T} \cdot e^{j n \omega_{0} t} \\
= & \sum X_{n} \cdot e^{-n \omega_{0} T} \cdot e^{j n \omega_{0} t}
\end{aligned}
$$

Differentiation:

$$
\begin{aligned}
\frac{d x}{d t}=\frac{d}{d t} & \left.\sum X_{n} e^{j n \omega_{0} t}\right) \\
& =\sum X_{n} \cdot j n \omega_{0} \cdot e^{j n \omega_{0} t} \\
& =\sum\left(X_{n} \cdot j n \omega_{0}\right) \cdot e^{j n \omega_{0} t}
\end{aligned}
$$

Integration:

$$
\begin{aligned}
\int x d t= & \int\left(\sum X_{n} e^{j n \omega_{0} t}\right) d t \\
& =\sum\left(\frac{X_{n}}{j n \omega_{0}}\right) e^{j n \omega_{0} t}
\end{aligned}
$$

Time Scaling

$$
x(a t)=\sum X_{n} e^{j n \omega_{0} a t}
$$

The Fourier coefficients don't change. All that changes are the frequencies

$$
\omega_{0} \rightarrow a \omega_{0}
$$

Convolution

$$
\int x(\tau) y(t-\tau) d \tau=\int\left(\sum X_{n} e^{j n \omega_{0} \tau}\right)\left(\sum Y_{n} e^{j n \omega_{0}(t-\tau)}\right) d \tau
$$

Summary

Operation	$\mathrm{x}(\mathrm{t})$	Xn
amplitude scaling	$\mathrm{ax}(\mathrm{t})$	$X_{n} \rightarrow a X_{n}$
addition	$\mathrm{x}(\mathrm{t})+\mathrm{y}(\mathrm{t})$	$\mathrm{Xn}+\mathrm{Yn}$
delay T seconds	$\mathrm{x}(\mathrm{t}-\mathrm{T})$	$X_{n} \rightarrow e^{-j n \omega_{0}} X_{n}$
differentiation	$; \frac{d x}{d t}$	$; X_{n} \rightarrow\left(\frac{1}{j n \omega_{0}}\right) X_{n}$
integration	$\int x \cdot d t$	$X_{n} \rightarrow\left(j n \omega_{0}\right) X_{n}$

With these properties you can derive the Fourier transform for different functions

Example 1: Delta Train:

$$
\begin{aligned}
& x(t)=x(t+2 \pi) \\
& x(t)=\delta(t)-\delta(t-\pi)
\end{aligned}
$$

The complex Fourier transform for a delta function with a period of 2π is $\frac{1}{2 \pi}$

$$
\delta(t) \leftrightarrow \frac{1}{2 \pi}
$$

A delayed delta function becomes

$$
\delta(t-\pi) \leftrightarrow e^{-j n \pi} \cdot\left(\frac{1}{2 \pi}\right)=\frac{(-1)^{n}}{2 \pi}
$$

Subtracting gives the Fourier transform for $\mathrm{x}(\mathrm{t})$

$$
\begin{aligned}
& X_{n}=\left(\frac{1-(-1)^{n}}{2 \pi}\right) \\
& X_{n}=\left\{\begin{array}{cc}
\left(\frac{1}{\pi}\right) & \text { n odd } \\
0 & \text { n even }
\end{array}\right.
\end{aligned}
$$

Example 2: Square Wave. If you integrate the previous function, you get a square wave

$$
y(t)=\int x(t) d t=\left\{\begin{array}{cc}
1 & 0<t<\pi \\
0 & \pi<t<2 \pi
\end{array}\right.
$$

The Fourier transform for a square wave is therefore

$$
\begin{aligned}
& Y_{n}=\left(\frac{1}{j n}\right) X_{n}=\left(\frac{1}{j n}\right)\left(\frac{1-(-1)^{n}}{2 \pi}\right) \\
& Y_{n}=\left\{\begin{array}{cl}
\left(\frac{-j}{n \pi}\right) & \text { n odd } \\
0 & \text { n even }
\end{array}\right.
\end{aligned}
$$

This is the same result we got twice before

Example 3: Triangle Wave: If you take the previous square wave,

- Remove the DC offset (so the square wave goes from -0.5 to +0.5)
- Integrate, and
- Multiply by $\left(\frac{2}{\pi}\right)$
you get a triangle wave

$$
\begin{aligned}
& z(t)=\frac{32}{\pi} \int y(t) \cdot d t \\
& Z_{n}=\left(\frac{32}{\pi}\right)\left(\frac{1}{j n}\right) Y_{n}=\left(\frac{32}{\pi}\right)\left(\frac{1}{j n}\right)\left(\frac{1-(-1)^{n}}{j 2 n \pi}\right) \\
& Z_{n}=16\left(\frac{(-1)^{n}-1}{n^{2} \pi^{2}}\right)
\end{aligned}
$$

Checking in Matlab:

```
cn = zeros(20,1);
for n=1:20
    cn(n)=((-1)^n - 1) / (n^2 * pi^2);
    end
x = 0*t;
for n=1:20
    x = x + 2*real(cn(n))* cos(n*t) - 2*imag(cn(n))*sin(n*t);
    end
plot(t,x)
```


Sum of the first 20 terms of the Fourier series approximation to a triangle wave

Example 4: Parabolic Sine Wave: If you integrate a triangle wave, you get parabolas. Multiply by a constant to keep the peak-to-peak amplitude equal to one

$$
\begin{aligned}
& p(t)=\frac{1}{\pi} \int z(t) \cdot d t \\
& P_{n}=\left(\frac{1}{\pi}\right)\left(\frac{1}{j n}\right) Z_{n}=\left(\frac{1}{\pi}\right)\left(\frac{1}{j n}\right)\left(\frac{(-1)^{n}-1}{2 n^{2} \pi^{2}}\right) \\
& P_{n}=\left(\frac{(-1)^{n}-1}{j 2 n^{3} \pi^{3}}\right)
\end{aligned}
$$

Checking in Matlab

```
cn = zeros(20,1);
for n=1:20
    cn(n) = 16*((-1)^n - 1) / (2* j*n^3 * pi^3);
    end
x = 0*t;
for n=1:20
    x = x + 2*real(cn(n))*cos(n*t) - 2*imag(cn(n))*sin(n*t);
    end
plot(t,x)
```


Parabolic Sine Wave

You can also find the Fourier transform for different functions with delays and differentiation.
Example 5: Find the Fourier Transform for the following function:

Solution: Start taking derivatives until you get delta functions. Delta functions are nice since they have a simple Fourier transform

$$
\delta(t) \leftrightarrow\left(\frac{1}{2 \pi}\right)
$$

A delayed delta function is

$$
\delta(t-T) \leftrightarrow\left(\frac{1}{2 \pi}\right) e^{-j n \omega_{0} T}
$$

So... start taking derivatives. Note that taking a derivative is the same as multiplying the Fourier transform by $j n \omega_{0}$

$$
\frac{d x}{d t} \leftrightarrow\left(j n \omega_{0}\right) X
$$

Integration (to get back to $\mathrm{x}(\mathrm{t})$) is equivalent to dividing by

$$
\int x \cdot d t \leftrightarrow\left(\frac{1}{j n \omega_{0}}\right) X
$$

Also note that this function has a period of 2π. Hence

$$
\omega_{0}=\frac{2 \pi}{T}=1
$$

$x(t)$ and its derivatives

Complex Fourier Transform

 of delta functions
$X_{1}=\left(\frac{1}{2 \pi}\right)\left(\frac{1}{j n \omega_{0}}\right)\left(-e^{-j 2 n \omega_{0}}\right)$

$X_{2}=\left(\frac{1}{2 \pi}\right)\left(\frac{1}{j n \omega_{0}}\right)^{2}\left(1-e^{-j n \omega_{0}}\right)$

This means the complex Fourier transform for $\mathrm{x}(\mathrm{t})$ is

$$
X=\left(\frac{1}{2 \pi}\right)\left(\frac{1}{j n \omega_{0}}\right)\left(-e^{-j 2 n \omega_{0}}\right)+\left(\frac{1}{2 \pi}\right)\left(\frac{1}{j n \omega_{0}}\right)^{2}\left(1-e^{-j n \omega_{0}}\right)
$$

or since $\omega_{0}=1$

$$
X=\left(\frac{1}{2 \pi}\right)\left(\frac{1}{j n}\right)\left(-e^{-j 2 n}\right)+\left(\frac{1}{2 \pi}\right)\left(\frac{1}{j n}\right)^{2}\left(1-e^{-j n}\right)
$$

Verifying in Matlab:

```
X = zeros(20,1);
    for n=1:20
        X(n) = (1/(2*pi)) * (1/(j*n)) * ( - exp(-j*2*n) );
        X(n) = X(n) + (1/(2*pi)) * (1/(j*n) )^2 * ( 1 - exp(-j*n) );
        end
x = 0*t;
for n=1:20
    x = x + 2*real(X(n))* cos(n*t) - 2*imag(X(n))*sin(n*t);
    end
```

plot(t,x)

