
Superposition

Linear Systems

Linear systems have the property:

f(a+b) = f(a) + f(b)

A large class of circuits are linear.  These are described by ordinary differential equations such as

an
dny

dtn + an−1
dn−1y

dtn−1
+ ... + a1

dy

dt
+ a0y = bm

dmx

dtm + bm−1
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Resistors, capacitors, and inductors are linear devices and produce linear differential equations of this form.  An

example of a function which is not linear is a threshold function (like a diode)

f(x) =





0 x < 1

1 x > 1

In this case

f(0.6 + 0.7) ≠ f(0.6) + f(0.7)

1 ≠ 0 + 0

An example of a differential equation which is nonlinear is

d2y

dt2
+ 

dy

dt



2

+ y ⋅
dy

dt
= x

As a rule of thumb, as long as you don't have diodes or other nonlinear devices in your circuit, it will behave as a

linear system. 

If you have a linear system, you can split a complex problem into several simpler problems.  This is the idea

behind superposition.  For example, suppose you have the forcing function

.x(t) = 2 + 3 cos(4t) + 5 cos(6t)

If  y(t) is a function of x(t):

y = f(x)

then

y = f(2 + 3 cos(4t) + 5 cos(6t))

If the system is linear, this is equivalent to

y = f(2) + f(3 cos(4t)) + f(5 cos(6t))

To find y(t)

Treat this as three separate problems.

Find y(t) for each input, ignoring the other inputs

The total output is then the sum of each of these separate problems.
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Pictorially, this looks like the following:

To find the output of a filter with three separate inputs,

Treat this as three copies of that filter, each operating on a separate input.

Sum the result to get the total output
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Actual Problem
Equivalent Problem using Superposition

Using Superposition, you can treat a problem with multiple inputs as multiple problems, each with a single input.

For example, find the solution to the following differential equation:

d2y

dt2
+ 2

dy

dt
+ 10y = 20x

when

x(t) = 2 + 3 cos(4t) + 5 sin(6t)

Solution:  Treat this as three separate problems

x1(t) = 2

x2(t) = 3 cos(4t)

x3(t) = 5 cos(6t)

To solve this differential equation for a sinusoidal input, convert to phasor notation.  The differential equation

d2y

dt2
+ 2

dy

dt
+ 10y = 20x

becomes

(jω)
2
Y + 2(jω)Y + 10Y = 20X

Y = 


20

(jω)
2
+2jω+10


X

Now, solve each problem separately.

x1(t) = 2

In phasor form
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X1 = 2

ω = 0

Y1 = 


20

(jω)
2
+2jω+10




ω=0

⋅ X1

Y1 = 2 ⋅ 2 = 4

y1(t) = 4

The second input:

x2(t) = 3 cos(4t)

In phasor form

X2 = 3 + j0

ω = 4

Y2 = 


20

(jω)
2
+2jω+10




ω=4

⋅ X2

Y2 = (−1.2 − j1.6) ⋅ (3 + j0)

Y2 = −3.6 − j4.8

y2(t) = −3.6 cos(4t) + 4.8 sin(4t)

The third input

x3(t) = 5 sin(6t)

Convert to phasors

X3 = 0 − j5

ω = 6

Y3 = 


20

(jω)
2
+2jω+10




ω=6

⋅ X3

Y3 = (−0.6341 − j0.2927) ⋅ (0 − j5)

Y3 = −1.4634 + j3.1707

y3(t) = −1.4634 cos(6t) − 3.1707 sin(6t)

The total output is then

y(t) = y1(t) + y2(t) + y3(t)

y(t) = 4 − 3.6 cos(4t) + 4.8 sin(4t) − 1.4634 cos(6t) − 3.1707 sin(6t)
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Note 1:  A common mistake is to simplify the complex numbers

Y = Y1 + Y2 + Y3 = (4) + (−3.6 − j4.8) + (−1.4634 + j3.1707)

Y = −1.0634 − 1.6293

This doesn't work:

y1(t), y2(t), and y3(t) are all at different frequencies

You can't simplify the sine waves

Note 2:  If you prefer polar form, then

Y1 = 4

y1(t) = 4

Y2 = −3.6 − j4.8 = 6∠ = 1260

y2(t) = 6 cos (4t + 1260)

Y3 = −1.4634 + j3.1707 = 3.4921∠1140

y3(t) = 3.9421 cos (6t + 1140)

resulting in

y(t) = 4 + 6 cos (4t + 1260) + 3.9421 cos (6t + 1140)

Either answer is correct.
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