Superposition

Linear Systems

Linear systems have the property:

$$
\mathrm{f}(\mathrm{a}+\mathrm{b})=\mathrm{f}(\mathrm{a})+\mathrm{f}(\mathrm{~b})
$$

A large class of circuits are linear. These are described by ordinary differential equations such as

$$
a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\ldots+a_{1} \frac{d y}{d t}+a_{0} y=b_{m} \frac{d^{m} x}{d t^{m}}+b_{m-1} \frac{d^{m-1} x}{d t^{m-1}}+\ldots+b_{1} \frac{d x}{d t}+b_{0} x
$$

Resistors, capacitors, and inductors are linear devices and produce linear differential equations of this form. An example of a function which is not linear is a threshold function (like a diode)

$$
f(x)= \begin{cases}0 & x<1 \\ 1 & x>1\end{cases}
$$

In this case

$$
\begin{aligned}
& f(0.6+0.7) \neq f(0.6)+f(0.7) \\
& 1 \neq 0+0
\end{aligned}
$$

An example of a differential equation which is nonlinear is

$$
\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}+y \cdot \frac{d y}{d t}=x
$$

As a rule of thumb, as long as you don't have diodes or other nonlinear devices in your circuit, it will behave as a linear system.

If you have a linear system, you can split a complex problem into several simpler problems. This is the idea behind superposition. For example, suppose you have the forcing function

$$
x(t)=2+3 \cos (4 t)+5 \cos (6 t) .
$$

If $\mathrm{y}(\mathrm{t})$ is a function of $\mathrm{x}(\mathrm{t})$:

$$
y=f(x)
$$

then

$$
y=f(2+3 \cos (4 t)+5 \cos (6 t))
$$

If the system is linear, this is equivalent to

$$
y=f(2)+f(3 \cos (4 t))+f(5 \cos (6 t))
$$

To find $\mathrm{y}(\mathrm{t})$

- Treat this as three separate problems.
- Find $y(t)$ for each input, ignoring the other inputs
- The total output is then the sum of each of these separate problems.

Pictorially, this looks like the following:

- To find the output of a filter with three separate inputs,
- Treat this as three copies of that filter, each operating on a separate input.
- Sum the result to get the total output

Using Superposition, you can treat a problem with multiple inputs as multiple problems, each with a single input.

For example, find the solution to the following differential equation:

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+10 y=20 x
$$

when

$$
x(t)=2+3 \cos (4 t)+5 \sin (6 t)
$$

Solution: Treat this as three separate problems

$$
\begin{aligned}
& x_{1}(t)=2 \\
& x_{2}(t)=3 \cos (4 t) \\
& x_{3}(t)=5 \cos (6 t)
\end{aligned}
$$

To solve this differential equation for a sinusoidal input, convert to phasor notation. The differential equation

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+10 y=20 x
$$

becomes

$$
\begin{aligned}
& (j \omega)^{2} Y+2(j \omega) Y+10 Y=20 X \\
& Y=\left(\frac{20}{(j \omega)^{2}+2 j \omega+10}\right) X
\end{aligned}
$$

Now, solve each problem separately.

$$
x_{1}(t)=2
$$

In phasor form

$$
\begin{aligned}
& X_{1}=2 \\
& \omega=0 \\
& Y_{1}=\left(\frac{20}{(j \omega)^{2}+2 j \omega+10}\right)_{\omega=0} \cdot X_{1} \\
& Y_{1}=2 \cdot 2=4 \\
& y_{1}(t)=4
\end{aligned}
$$

The second input:

$$
x_{2}(t)=3 \cos (4 t)
$$

In phasor form

$$
\begin{aligned}
& X_{2}=3+j 0 \\
& \omega=4 \\
& Y_{2}=\left(\frac{20}{(j \omega)^{2}+2 j \omega+10}\right)_{\omega=4} \cdot X_{2} \\
& Y_{2}=(-1.2-j 1.6) \cdot(3+j 0) \\
& Y_{2}=-3.6-j 4.8 \\
& y_{2}(t)=-3.6 \cos (4 t)+4.8 \sin (4 t)
\end{aligned}
$$

The third input

$$
x_{3}(t)=5 \sin (6 t)
$$

Convert to phasors

$$
\begin{aligned}
& X_{3}=0-j 5 \\
& \omega=6 \\
& Y_{3}=\left(\frac{20}{(j \omega)^{2}+2 j \omega+10}\right)_{\omega=6} \cdot X_{3} \\
& Y_{3}=(-0.6341-j 0.2927) \cdot(0-j 5) \\
& Y_{3}=-1.4634+j 3.1707 \\
& y_{3}(t)=-1.4634 \cos (6 t)-3.1707 \sin (6 t)
\end{aligned}
$$

The total output is then

$$
\begin{aligned}
& y(t)=y_{1}(t)+y_{2}(t)+y_{3}(t) \\
& y(t)=4-3.6 \cos (4 t)+4.8 \sin (4 t)-1.4634 \cos (6 t)-3.1707 \sin (6 t)
\end{aligned}
$$

Note 1: A common mistake is to simplify the complex numbers

$$
\begin{aligned}
& Y=Y_{1}+Y_{2}+Y_{3}=(4)+(-3.6-j 4.8)+(-1.4634+j 3.1707) \\
& Y=-1.0634-1.6293
\end{aligned}
$$

This doesn't work:

- $\mathrm{y} 1(\mathrm{t}), \mathrm{y} 2(\mathrm{t})$, and $\mathrm{y} 3(\mathrm{t})$ are all at different frequencies
- You can't simplify the sine waves

Note 2: If you prefer polar form, then

$$
Y_{1}=4
$$

$$
y_{1}(t)=4
$$

$$
Y_{2}=-3.6-j 4.8=6 \angle=126^{0}
$$

$$
y_{2}(t)=6 \cos \left(4 t+126^{\circ}\right)
$$

$$
Y_{3}=-1.4634+j 3.1707=3.4921 \angle 114^{0}
$$

$$
y_{3}(t)=3.9421 \cos \left(6 t+114^{0}\right)
$$

resulting in

$$
y(t)=4+6 \cos \left(4 t+126^{0}\right)+3.9421 \cos \left(6 t+114^{0}\right)
$$

Either answer is correct.

