Common Base \& Common Collector Amplifiers ECE 321: Electronics II

Lecture \#15
Jake Glower

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

DC Analysis (review):

To use a transistor as a Class-A amplifier

- Use Re to stabilize the Q-point
- Use R1 and R2 to set the Q-point

Assume the Q-point is

$$
\begin{aligned}
& \mathrm{Ic}=6 \mathrm{~mA} \\
& \mathrm{Vc}=6 \mathrm{~V}
\end{aligned}
$$

Capacitors isolate the circuit at DC

Common Base Amplifier:

- Connect the base to ground
- Connect the input to Ve
- Connect the output to Vc:

What is the 2-port model for the resulting AC circuit?

- a.k.a. the Small Signal Model

Small-Signal Model (AC Model)

Replace the transistor with it's AC model

- Ignore the DC terms (already computed)
- Diode becomes rf (867 Ohms)

Note:

- $\mathrm{Vcc}=12 \mathrm{~V}(\mathrm{DC})+0 \mathrm{~V}(\mathrm{AC})$
- This is AC analysis

Using superposition

- $\mathrm{V}($ total $)=\mathrm{DC}+\mathrm{AC}$

Redraw the circuit

- Small signal (AC) model from Vin to Vout

Find the 2-port parameters:

Rin: Set $\mathrm{Vo}=0 \mathrm{~V}$ and measure the input resistance.

- Apply 1V to Vin and compute Iin

$$
\begin{aligned}
& I_{i n}=\frac{1 V}{R_{e}}+\frac{1 V}{r_{f}}+\beta I_{b} \\
& I_{i n}=\frac{1 V}{R_{e}}+\frac{1 V}{r_{f}}+\frac{\beta}{r_{f}}
\end{aligned}
$$

SO

$$
R_{i n}=\left(\frac{1}{R_{e}}+\frac{1}{r_{f}}+\frac{\beta}{r_{f}}\right)^{-1}
$$

Note that this is also

$$
\begin{aligned}
& R_{i n}=R_{e}\left\|r_{f}\right\|_{\frac{r_{f}}{\beta}} \\
& R_{i n}=4.13 \Omega
\end{aligned}
$$

Ain: Set $\mathrm{Vo}=1 \mathrm{~V}$ and measure the voltage at the input.

- Vin $=0 \mathrm{~V}$
- $\mathrm{Ao}=0$

Rout:

- Set Vin = 0V
- Apply 1V test to Vout
- Compute I: I = 1mA
- Rout $=1 / \mathrm{I}=1000$ Ohms

Ao: Set Vin $=1 \mathrm{~V}$ and measure the voltage at the output.

$$
\begin{aligned}
& I_{b}=\frac{1}{r_{f}} \\
& I_{c}=\beta I_{b} \\
& A_{o}=V_{o}=\frac{\beta R_{c}}{r_{f}} \\
& A_{o}=+230
\end{aligned}
$$

Resulting 2-Port Model

- Feature: Low Input Impedance
- First stage of an amplifier if you need a low-impedance load

Cascading CB Amplifiers

- CB amplifiers have a low imput impedance (can be good)
- They don't work well as volage amplifiers
- Ao actually gets worse when you cascande CB amplifiers:
- Apply 1V to Vin

$$
\begin{aligned}
& V_{2}=\left(\frac{4.13}{4.13+1000}\right) \cdot 230 \mathrm{~V}=0.946 \mathrm{~V} \\
& A_{o}=V_{\text {out }}=230 V_{2}=217.6
\end{aligned}
$$

CircuitLab Simulation

- $\mathrm{V} 0=1 \mathrm{mV}, 1 \mathrm{kHz}$ sine wave
- Vout $=200.9 \mathrm{mV}$ sine wave
- $\mathrm{Ao}=200.9$ (vs. 230 computed)

CircuitLab Simulation (Rin)

- Set R3 $=4$ Ohms
- Set RL = 0 Ohms
- Mesure Vout $=108.5 \mathrm{mV}$
- Comupte Rin
$\left(\frac{R_{i n}}{R_{i n}+4}\right) 200.9 \mathrm{mV}=108.5 \mathrm{mV}$
$R_{\text {in }}=\left(\frac{108.5}{200.9-108.5}\right) 4 \Omega$
$R_{\text {in }}=4.70 \Omega$
- vs. 4.13 Ohms computed

CircuitLab: Rout

- Set R3 $=0$ Ohms
- Set RL = 1000 Ohms
- Measure Vout $=104.1 \mathrm{mV}$
- Compute Rout

$$
\begin{aligned}
& \left(\frac{1000}{1000+R_{\text {out }}}\right) 209.9 m V=104.1 \mathrm{mV} \\
& R_{\text {out }}=\left(\frac{209.9-104.1}{104.1}\right) 1 \mathrm{k} \Omega \\
& R_{\text {out }}=1016 \Omega
\end{aligned}
$$

- vs 1000 Ohms computed

CB Amplfier: 2-Port Model (experimental)

Common Collector Amplifier:

- Short the collector to ground
- Connect the input to the base
- Connect the output to the collector

What is the 2-port model for the resulting AC circuit?

- a.k.a. the Small Signal Model

Redraw the Circuit

Find the 2-Port Parameters

Rin: Set $\mathrm{Vo}=0 \mathrm{~V}$ and measure the resisance at the input.

$$
\begin{aligned}
& R_{i n}=R_{1}\left\|R_{2}\right\|_{r_{f}} \\
& R_{i n}=605 \Omega
\end{aligned}
$$

Ain: Set $\mathrm{Vo}=1 \mathrm{~V}$ and measure the voltage at the input. By voltage division
$A_{\text {in }}=\left(\frac{R_{1} \| R_{2}}{R_{1} \| R_{2}+r_{f}}\right)$
$A_{\text {in }}=0.6976$

Rout: Set Vin $=0 \mathrm{~V}$

- Apply 1V to Vout and compute the current

$$
\begin{aligned}
& I=\frac{1}{r_{f}}+\frac{1}{R_{e}}-\beta\left(-I_{b}\right) \\
& I=\frac{1}{r_{f}}+\frac{1}{R_{e}}+\frac{\beta}{r_{f}} \\
& R_{\text {out }}=\left(\frac{1}{r_{f}}+\frac{1}{R_{e}}+\frac{\beta}{r_{f}}\right)^{-1}=r_{f}\left\|R_{e}\right\| \frac{r_{f}}{\beta}=4.14 \Omega
\end{aligned}
$$

Ao: Set Vin = 1V and measure the voltage across the output. Using voltage node analysis:

$$
\begin{aligned}
& \left(\frac{V_{o}-1}{r_{f}}\right)+\left(\frac{V_{o}}{R_{e}}\right)+200\left(\frac{V_{o}-1}{r_{f}}\right)=0 \\
& V_{o}=\left(\frac{\frac{201}{r_{f}}}{\frac{201}{r_{f}}+\frac{1}{R_{e}}}\right)=0.9568
\end{aligned}
$$

Result: CC Amplfier

Experimental Results: CC Amp

Ao

- Set Vin $=1 \mathrm{mV}$ p, 1 kHz sine wave
- Set R14 = 0
- Set RL=10M
- $\mathrm{Ao}=\mathrm{Vo}=0.956 \mathrm{mV}$

- $\mathrm{Ao}=0.956$ (0.9568 computed)

Rout:

- Connect Vin to 0V
- Apply a 1V 1 kHz sine wave to Vout
- Measure the current, Iout
- Iout $=227.1 \mathrm{uA}$
meaning
- $R_{\text {out }}=\frac{1 m V}{227 \mu A}=4.41 \Omega$
- Computed $=$ 4.14 Ohms

Ain

- Set Vout $=1 \mathrm{mV}$, 1 kHz sine wave
- Connect 10M Ohms to Vin
- Measure Vin

Result:

- Vin $=736 u V$
- Ain $=0.736$
- (0.6976 computed)

Rin

- Set Vout = 0V (0 Ohms)
- Apply $1 \mathrm{mV}, 1 \mathrm{kHz}$ to Vin
- Measure the current draw
- Icb $=1.968 u A$

$$
R_{i n}=\frac{1 m V}{1,968 \mu A}=508 \Omega
$$

- vs 605 Ohms computed

Resulting 2-Port Model

Calculated

Summary

By changing how you connect the transistor circuit, you can get three different amplifiers

- CE, CB, CC
- Shopping list of amplifiers you can use

Each has a different 2-port model

