ECE 320: Handout \#23

The specifications for an IRF530 MOSFET (default MOSFET for CircuitLab) is

- $\max (\mathrm{Ic})=14 \mathrm{~A}$ continuous, 49 A instantaneous
- $\quad \max (\mathrm{Vds})=100 \mathrm{~V}$
- 160mOhm @ Ids = 8.4A @ Vgs = 10V
- $\operatorname{Vgs}(\mathrm{th})=4.0 \mathrm{~V}(\max)$

Determine

- The transconductance gain, kn,
- The Q -point (Vds, Ids) when $\mathrm{Vg}=5 \mathrm{~V}$, and
- The Q-point (Vds, Ids) when $\mathrm{Vg}=5 \mathrm{~V}$ and the 100 Ohm resistor is reduced to 10 Ohms

Solution:

The specifications for an IRF530 MOSFET (default MOSFET for CircuitLab) is

- $\max (\mathrm{Ic})=14 \mathrm{~A}$ continuous, 49 A instantaneous
- $\max (\mathrm{Vds})=100 \mathrm{~V}$
- 160mOhm @ Ids = 8.4A @ Vgs = 10V
- $\mathrm{Vgs}(\mathrm{th})=4.0 \mathrm{~V}(\max)$

Determine the Q -point (Vds, Ids) when $\mathrm{Vg}=10 \mathrm{~V}$

Problem 1: Determine kn

The spec is in the ohmic region

$$
\begin{aligned}
& V_{d s}=(160 \mathrm{~m} \Omega)(8.4 \mathrm{~A})=1.344 \mathrm{~V} \\
& I_{d}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& 8.4 A=k_{n}\left(10 \mathrm{~V}-4 \mathrm{~V}-\frac{1.344 \mathrm{~V}}{2}\right) 1.344 \mathrm{~V} \\
& k_{n}=1.173 \frac{\mathrm{~A}}{V^{2}}
\end{aligned}
$$

Problem 2: Determine (Vds, Ids) when $\mathrm{Vg}=5 \mathrm{~V}$

Write 2 equations for 2 unknowns.
Assume Ohmic

$$
\begin{aligned}
& I_{d}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& I_{d}=1.173\left(5 V-4 V-\frac{V_{d s}}{2}\right) V_{d s}
\end{aligned}
$$

The load line is

$$
100 I_{d}+V_{d s}=10
$$

Turns are two solutions. In Matlab, you can see these

```
-->Vds = [0:0.01:10]';
-->I1 = 1.173*(5 - 4 - Vds/2).*Vds;
-->I2 = (10 - Vds) / 100;
-->plot(Vds,I1*1000,Vds,I2*1000);
-->xlabel('Vds');
-->ylabel('Ids (mA)')
```


The solution on the left is

- $\mathrm{Vds}=88.33 \mathrm{mV}$
- \quad Ids $=99.1 \mathrm{~mA}$

Problem 3: Determine (Vds, Ids) when $\mathrm{Vg}=\mathbf{5 V}$ and $\mathrm{Rd}=10$ Ohms

Assume Ohmic again. The MOSFET equation is (no change)

$$
I_{d}=1.173\left(5 V-4 V-\frac{V_{d s}}{2}\right) V_{d s}
$$

The load line becomes.

$$
10 I_{d}+V_{d s}=10
$$

Now there is no solution. This tells you

- The load line does not intersect the Ohmic region equation
- The MOSFET is actually saturated

In Matlab

```
-->Vds = [0:0.01:10]';
-->I1 = 1.173*(5 - 4 - Vds/2).*Vds;
-->I2 = (10 - Vds) / 10;
-->plot(Vds,I1*1000,Vds,I2*1000);
-->max(I1)*1000
    586.5
-->plot([1,10],[586,596],'m')
-->xlabel('Vds');
-->ylabel('Ids (mA)')788
```


Load Line (red), Ohmic VI curve (blue), Saturated VI curve (green)

Since we're actually operating in the saturated region, the two equations you need to solve are

$$
\begin{aligned}
& I_{d}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2} \\
& I_{d}=\frac{1.173}{2}(5 \mathrm{~V}-4 \mathrm{~V})^{2} \\
& I_{d}=586.5 \mathrm{~mA}
\end{aligned}
$$

and the load line

$$
\begin{aligned}
& 10 I_{d}+V_{d s}=10 \\
& V_{d s}=4.135 V
\end{aligned}
$$

Problem 2: Determine (Vds, Ids) when $\mathrm{Vg}=10 \mathrm{~V}$

Assume saturated state

$$
\begin{aligned}
& I_{d}=\left(\frac{k_{n}}{2}\right)\left(V_{g s}-V_{t h}\right)^{2} \\
& I_{d}=\left(\frac{1.173}{2}\right)(10-4)^{2}=21.149 A
\end{aligned}
$$

This is more than is possible $(10 \mathrm{~V} / 100 \mathrm{Ohms}=100 \mathrm{~mA})$
Assume Ohmic. Write 2 equations for 2 unknowns (Id, Vds)

$$
\begin{aligned}
& I_{d}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& I_{d}=1.173\left(10-4-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}+100 I_{d}=10
\end{aligned}
$$

Solving

$$
\begin{aligned}
& \text { Vds }=14.18 \mathrm{mV}, \quad \text { Ids }=99.7 \mathrm{~mA} \\
& \text { Rds }=(\text { Vds } / \text { Ids })=142 \mathrm{mOhms}
\end{aligned}
$$

