
Circuit Analysis using Fourier Transforms

Background

If you have a circuit with inductors and/or capacitors, you need to use differential equations to describe

that circuit's operation.  

If the input to that circuit is a sinusoid, phasor analysis can be used to analyze that circuit.

If the input to that circuit is a periodic function which is not a sinusoid, you can use Fourier transforms to

convert the input into a sum of sinusoids.  Then you can use phasor analysis to evaluate the circuit.

Example 1:  Square Wave vs. Sine Wave

A common mistake students make in lab is using a square wave input to measure the gain of a circuit.  In a sense,

using a square wave for the input is a good thing:

Square waves contain many frequencies (infinite number of odd harmonics).

With a single measurement you can determine the gain of a circuit at multiple frequencies.

However, it's also a bad thing

In order to determine the gain at each frequency, you need to decompose the input and output into their

Fourier components.

For example, determine the output, v2(t), when

Vin is a 10Vpp 100Hz sine wave, and

Vin is a 10Vpp 100Hz square wave.

+

-
Vin

50uF 50uF

10 10

100 100

V1 V2

Step 1:  Find the transfer function from Vin to V2.

The impedance of the capacitors are:

Zc = 1

jωC

Writing the voltage node equations:
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


V1−Vin

10

 + 

V1

1/jωC


 + 

V1

100

 + 

V1−V2

10

 = 0




V2−V1

10

 + 

V2

1/jωC


 + 

V2

100

 = 0

Grouping terms

* 0.1(0.21 + jωC)V1 − (0.1)V2 = 0.1V in

* (0.21 + jwC)−0.1V1 + (0.11 + jωC)V2 = 0

Solving

(−0.12 + (0.11 + jωC)(0.21 + jωC))V2 = 0.01Vin


(jωC)

2
+ 0.32(jωC) + 0.0131V2 = 0.01Vin

V2 = 


0.01

(jωC)
2+0.32(jωC)+0.0131


Vin

Step 2:  Determine Vin in terms of sinusoids.  If Vin is a 10Vpp 100Hz square wave

v in(t) =





+5V sin(200πt) > 0

−5V sin(200πt) < 0

then take the Fourier transform for Vin.  From before, a 1Vpp (0-1V) square has the Fourier transform of

V in = Σ
n odd




2
nπ

 sin (nω0)

A 10Vpp square wave is therefore

V in = Σ
n odd




20
nπ

 sin (nω0t)

v in = 6.36 sin (628t) + 2.12 sin (1884t) + 1.27 sin (3140t) + ...

Step 3:  Find V2(t).  Using superposition, treat this as three separate problems:
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100Hz 300Hz 500Hz

input: input: input:

v in = 6.26 sin (628t) v in = 2.12 sin (1884t) v in = 1.27 sin (3140t)

gain: gain: gain:

G(jω) = 0.635∠ − 400 G(jω) = 0.328∠ − 820 G(jω) = 0.194∠ − 1030

output = gain * input output = gain * input output = gain * input

v2 = 3.98 sin (628t − 400) +0.70 sin (1884t − 820) +0.25 sin (3140t − 1030)

The net result is

v2(t) = 3.98 sin (628t − 400) + 0.70 sin (1884t − 820) + +0.25 sin (3140t − 1030)

Checking in PartSim: 

Output for the 2-stage RC filter with a 100Hz, 10Vpp square wave input

Note that the gain at 100Hz isn't easy to tell form this result:  the output contains several frequencies.

If you did take the Fourier transform of the input and output, you could determine the gain at several frequencies

all at once.  That takes a lot of work though...

NDSU Circuit Analysis using Fourier  Transforms ECE 311

JSG 3 June 14, 2018



If instead you apply a 10Vpp 100Hz sine wave, then the output is

100Hz 300Hz 500Hz

input: input: input:

v in = 5 sin (628t) v in = 0 v in = 0

gain: gain: gain:

G(jω) = 0.635∠ − 400 doesn't matter:  input is zero. doesn't matter:  input is zero.

output = gain * input output = gain * input output = gain * input

v2 = 3.18 sin(628t − 400 +0 +0

v2 = 3.18 sin(628t − 400

Checking in PartSim:

Output for the 2-stage RC filter with a 100Hz, 10Vpp sine wave input

Note that

   -   which matches up with the theoretical gain of 0.635gain = 


3.176V

5V


 = 0.634

   -   which matches up with the theoretical phasephase = −
1.1ms delay in output

10ms period

 ⋅ 3600 = −39.60

shift of -40 degrees.

Example 2:  Buck Converter. 
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This circuit converts a 12VDC power supply to a lower voltage at V2 with a small ripple.  Find the voltage at V2:

+

-
+12V

1kHz

70% Duty Cycle
0.1H

100

3uF

V1 V2

To analysis this circuit in ECE 320, we change the problem so that it's easier to solve but keeps the flavor of the

original problem.  In ECE 320, we assume that V1 has two terms:

A DC term (8.19V) which is the average of 12V (when the switch is closed) and -0.7V (when the switch is

open), and

An AC term (12.7Vpp, 1kHz).

The answer you get is close, but slightly different that PartSim gives you.  A more accurate answer requires

Fourier transforms.

Step 1:  Express V1(t) in terms of its Fourier series.  V1(t) looks like the following:

Switch Open Switch Closed Switch Open Switch Closed

0.3ms 0.7ms 0.3ms 0.7ms

+12.0V

-0.7V time

t=0 t = 1ms

One Cycle

The DC level is the average voltage:

V1(0) = 0.7 ⋅ 12V + 0.3 ⋅ (−0.7V)

V1(0) = 8.190V

The fundamental frequency is

  rad/secω0 = 2π

T
= 2000π

Taking the derivative gives delta functions:

NDSU Circuit Analysis using Fourier  Transforms ECE 311

JSG 5 June 14, 2018



dv1

dt
= 12.7δ(t) − 12.7δ(t − 0.7ms)

This gives the complex Fourier transform of

(jn)V1 = 


12.7

2π

 (1 − e−jn⋅1.4π)

V1(nω0) = 


−j6.35

πn

 (1 − e−j1.4nπ)

Checking in Matlab:

DC = 12*0.7 - 0.3*0.7

    8.19  
 
n = [1:7]';
 
V1 = -j*6.35 ./ (pi * n) .* (1 - exp(-j*1.4*n*pi));
 
v1 = DC + 0*t;
 
for n=1:7
  v1 = v1 + 2*real(V1(n))*cos(n*w0*t) - 2*imag(V1(n))*sin(n*w0*t);
  end
 

Step 2:  Use phasor analysis to find the transfer function from V1 to V2

L → jωL

C → 1

jωC

Writing the voltage node equation at V2:




V2−V1

jωL


 +






V2




1

jωC






 + 

V2

R


 = 0
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


V2−V1

jωL


 + ((jωC)V2) + 

V2

R


 = 0






1

jωL


 + (jωC) + 

1

R




V2 = 


1

jωL


V1

V2 =








1

jωL








1

jωL

 +(jωC)+

1

R








V1

With a little algebra

V2 = 


R

(jω)
2RLC+jωL+R


V1

Step 3:  Compute V2.  Output is gain times input:

Harmonic Frequency V1(n) G(jω) Yn

n jω = jnω0 


−j3.175

π2n


 (1 − e−j1.4n) 


R

(jω)
2RLC+jωL+R




G(jω) ⋅ Xn

0 0 8.190 1.000 8.190 

1 j 6,283   - 1.9223 - 2.6459i    - 0.069 - 0.04i         0.0269 + 0.2596i  

2 j 12,566     0.594 - 1.8283i     - 0.0201 - 0.0054i    - 0.0219 + 0.0335i  

3 j 18,850     0.396 - 0.1287i     - 0.0092 - 0.0016i    - 0.0038 + 0.0005i  

4 j 25,133   - 0.4806 - 0.3492i    - 0.0052 - 0.0007i      0.0023 + 0.0022i  

5 j 31,416   - 0.8085i             - 0.0034 - 0.0004i    - 0.0003 + 0.0027i  

6 j 37,699     0.3204 - 0.2328i    - 0.0023 - 0.0002i    - 0.0008 + 0.0005i  

7 j 43,982   - 0.1697 - 0.0551i    - 0.0017 - 0.0001i      0.0003 + 0.0001i  

In Matlab:

n = [1:7]';
w0 = 2*pi/T;
s = j*n*w0;
 
G = R ./ (R*L*C*(s.^2) + L*s + R);
 
V2 = G .* V1;

v2 = DC + 0*t;
 
for n=1:7
   v2 = v2 + 2*real(V2(n))*cos(n*w0*t) - 2*imag(V2(n))*sin(n*w0*t);
   end
 
plot(t*1000,v2)
xlabel('Time (ms)');
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Comparing this answer to what we compute in ECE 320:

The actual peak-to-peak voltage at V2 is

V2pp = max(v2) - min(v2)
 
    1.0700211  

Using only the 1st harmonic and assuming V1pp(n=1) is 12.7Vpp results in

V2pp_approx = abs( G(1) * 12.7 )
  
    1.0133753  
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