ECE 111 - Homework \#12

Week \#12: ECE 341 Random Processes. Due Tuesday, April 11th

Chi-Squared Tests

Problem 1: The following Matlab code generates 90 random die rolls for a six sided die

```
RESULT = zeros(1,6);
for i=1:90
    D6 = ceil( 6*rand );
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

$$
\begin{array}{rrrrrrr}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\text { RESULT }= & 13 & 14 & 13 & 13 & 20 & 17
\end{array}
$$

Set up a chi-squared table. The expected frequency ($n * p$) is

$$
n p=(90)\left(\frac{1}{6}\right)=15
$$

Roll	p	$\mathrm{n} * \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
1	$1 / 6$	15	13	0.27
2	$1 / 6$	15	14	0.07
3	$1 / 6$	15	13	0.27
4	$1 / 6$	15	13	0.27
5	$1 / 6$	15	20	1.67
6	$1 / 6$	15	17	0.27
			Total	$\mathbf{2 . 8}$

From StatTrek. with 5 degrees of freedom, a chi-squared score of 2.80 corresponds to a probability of

$$
\mathrm{p}=0.26921
$$

There is a $\mathbf{2 6 . 9 2 1 \%}$ chance that this is a loaded die
note: answers vary - this is a random process

- Enter value for degrees of freedom. - Enter a value for one, and only one, of the other textboxes. - Click Calculate to compute a value for the remaining textbox.	
Degrees of freedom	5
Chi-square critical value (x)	2.8
Probability: $\mathrm{P}\left(\mathrm{X}^{2} \leq 2.8\right)$	0.26921
Probability: $P\left(X^{2} \geq 2.8\right)$	0.73079
Calculate	

Problem 2: The following Matlab code generates 90 rolls of a loaded six-sided die (12% of the time, you roll a 6):

```
RESULT = zeros(1,6);
for i=1:90
    if(rand < 0.12)
        D6 = 6;
    else
        D6 = ceil( 6*rand );
        end
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

```
RESULT = 13 14 16 13 13 12 12 
```

Compute the chi-squared score:

Roll	p	$\mathrm{n} * \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
1	$1 / 6$	15	13	0.27
2	$1 / 6$	15	14	0.07
3	$1 / 6$	15	16	0.07
4	$1 / 6$	15	13	0.27
5	$1 / 6$	15	12	0.6
6	$1 / 6$	15	22	3.27
			Total	$\mathbf{4 . 5 3}$

Use StatTrek to conver this to a probability: $\mathrm{p}=0.52412$

There is a $\mathbf{5 2 . 4 1 2 \%}$ chance this is a loaded die
It's not easy to spot 12% loading
note: answers vary - this is a random process

- Enter value for degrees of freedom.
- Enter a value for one, and only one, of the other textboxes.
- Click Calculate to compute a value for the remaining textbox.

Calculate

Sidelight: Roll the dice 900 times (not required - just playing with Matlab)

```
RESULT = zeros(1,6);
for i=1:900
    if(rand < 0.12)
        D6 = 6;
    else
        D6 = ceil( 6*rand );
        end
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
\begin{tabular}{llllll}
136 & 131 & 125 & 137 & 155 & 216
\end{tabular}
```

Calculated the chi-squared score:

Roll	p	$\mathrm{n} * \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
1	$1 / 6$	150	136	1.31
2	$1 / 6$	150	131	2.41
3	$1 / 6$	150	125	4.17
4	$1 / 6$	150	137	1.13
5	$1 / 6$	150	166	1.71
6	$1 / 6$	150	216	29.04
			Total	$\mathbf{3 9 . 7 5}$

Now you can be almost 100% certain that the die is loaded

- Given enough data, you can spot even 1% loading
- It might take a lot of rolls to detect small amounts of loading, but you do it.

Chi-squared tests also let you calculate how many rolls you need in order to detect a given amount of loading.

Am I Psychic?

Problem \#3: Shuffle a deck of 52 playing cards and place it face down on a table.

- Predict the suit of the top card then reveal it. If correct, place the card in one pile (correct). If incorrect, place it in another pile.
- Repeat for all 52 cards.

Use a chi-squared test to test the hypothesis that you're just guessing (probability of being correct is 25%)

I was correct 10 times out of 52
Calculating the chi-squared score:

Roll	p	$\mathrm{n} * \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
Correct	$1 / 4$	13	10	0.69
Incorrect	$3 / 4$	39	42	0.23
			Total	0.92

Use StatTrek to convert this to a probabiliy od 0.66253

There is a $\mathbf{6 6 . 2 5 3 \%}$ chance that I'm not just guessing

- 99% tells me I'm not guessing (psychic)
- 1% tells me my guesses are not random (such as I always guess spades)
- Inbetween tells me I'm just guessing. Sigh.

Monte-Carlo Simulation

Problem \#4: Let y be the sum of six 4 -sided dice plus five 6 -sided dice plus four 8 -sided dice

$$
\mathrm{y}=6 \mathrm{~d} 4+5 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

a) Generate 100,000 values for y using Matlab and plot the frequency of each number on a bar chart

```
RESULT = zeros(90,1);
for i=1:1e5
    d4 = ceil( 4*rand(6,1) );
    d6 = ceil( 6*rand(5,1) );
    d8 = ceil( 8*rand(4,1) );
    Y = sum(d4) + sum(d6) + sum(d8);
    RESULT(Y) = RESULT(Y) + 1;
    end;
bar(RESULT)
```


Frequnecy of Each Result
Note: The resuult is a bell-shaped curve (central-limit theorem in action)
b) From your results, determine the probability that $\mathrm{y}>59.5$ (the number of times the sum is more than 59.5)

```
>> sum(RESULT(60:90)) / 1e5
ans = 0.0857
```

The sum is 60 or more 8.57% of the time
c) From your results, determine 'a' such that $\mathrm{y}<\mathrm{a} 5 \%$ of the time

```
>> sum(RESULT(1:40)) / 1e5
ans = 0.0634
>> sum(RESULT(1:39)) / 1e5
ans = 0.0465
```

5\% happens somewhere between 39 and 40. Call it 39.5
d) From your results, determine 'b' such that $\mathrm{y}>\mathrm{b} 5 \%$ of the time

```
>> sum(RESULT(61:90)) / 1e5
ans = 0.0636
>> sum(RESULT(62:90)) / 1e5
ans = 0.0459
```

5\% happens somewhere between 61 and 62 (call it 61.5)

Note: the 90% confidence interval for y is $\mathrm{a}<\mathrm{y}<\mathrm{b}$.

The $\mathbf{9 0 \%}$ confidnece interval is $\mathbf{3 9 . 5}<\mathrm{y}<\mathbf{6 1 . 5}$

Normal Approximation

The mean and standard deviation for a fair 6-sided die and 4-sided die are:

$$
\begin{array}{lll}
\mu_{d 4}=2.5 & \mu_{d 6}=3.5 & \mu_{d 8}=4.5 \\
\sigma_{d 4}=1.118 & \sigma_{d 6}=1.7078 & \sigma_{d 10}=2.2913
\end{array}
$$

Problem 5: Let Y be the sum of rolling six 4 -sided dice (6 d 4) plus five 6 -sided dice (5 d 6) plus four 8 -sided dice.

$$
\mathrm{Y}=6 \mathrm{~d} 4+5 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

a) What is the mean and standard deviation of Y ?

When you sum normal distributions, the means add

$$
\begin{aligned}
& \mu_{y}=6 \cdot 2.5+5 \cdot 3.5+4 \cdot 4.5 \\
& \mu_{y}=50.5
\end{aligned}
$$

and the variance adds

$$
\begin{aligned}
& \sigma_{y}^{2}=6 \cdot(1.118)^{2}+5 \cdot(1.7078)^{2}+4 \cdot(2.2913)^{2} \\
& \sigma_{y}^{2}=43.0833
\end{aligned}
$$

resulting in the standard deviation being

$$
\begin{aligned}
& \sigma_{y}=\sqrt{43.0833} \\
& \sigma_{y}=6.5638
\end{aligned}
$$

Just for fun, plot the normal distribution on top of the Monte-Carlo simulation (scaled so that the peak is the same). The normal approximation is almost dead on (with requiring zero die rolls)

```
>> hold on
>> x = 50.5;
>> s = 6.5638;
>> s1 = [-4:0.01:4]';
>> p = exp(-s1.^2 / 2);
>> p = p * max(RESULT);
>> plot(sl*s+x, p, 'r.')
>> xlabel('Roll');
```


b) Using a normal approximation, what is the 90% confidence interval for Y ?

From StatTrek, the z-score for 5% tails is 1.64485

$$
\mu-1.64485 \sigma<\text { roll }<\mu+1.64485
$$

$39.704<$ roll $<61.296 \quad$ zero rolls (normal approximation)
note: From a Monte-Carlo simulation, the result was

$$
39.5<\text { roll }<61.5 \quad 100,000 \text { rolls }
$$

Note that with a normal approximation, I got the same result without needing any die rolls.

```
>> clf
\(\gg \mathrm{p}=\mathrm{p} / \max (\mathrm{p}) ;\)
\(\gg \operatorname{plot}(\mathrm{s} 1 * \mathrm{~s}+\mathrm{x}, \mathrm{p}, \mathrm{\prime b}\) ', 39.704*[1,1],[0,1],'r--',61.296*[1,1],[0,1],'r--')
>> xlabel('Roll');
```


90% confidence interval calculated using a normal distribution.
c) Using a normal approximation, what is the probability that the sum the dice will be more than 59.5 ?

Find the z -score

$$
z=\left(\frac{59.5-\mu_{y}}{\sigma_{y}}\right)=\left(\frac{59.5-50.5}{6.5638}\right)=1.3712
$$

From StatTrek, this corresponds to a probability of 0.08516

There is am $\mathbf{8 . 5 6 1} \%$ chance of rolling more than $\mathbf{5 9 . 5}$

note: From the Monte-Carlo simulation, the odds are 8.57%. With a normal approximation, I got the same result with zero die rolls.

Student-t Test

Problem 6: Using Matlab, determine four values for Y

$$
\mathrm{Y}=6 \mathrm{~d} 4+5 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

6a) From this, determine the mean and standard deviation of your data set.

```
DATA = [];
for i=1:4
    d4 = ceil( 4*rand(6,1) );
    d6 = ceil( 6*rand(5,1) );
    d8 = ceil( 8*rand(4,1) );
    Y = sum(d4) + sum(d6) + sum(d8);
    DATA = [DATA, Y];
    end
DATA
x = mean(DATA)
s = std(DATA)
x = 52.5000
s=8.5829
DATA = 49 59 42 60
```

6b) Use a t-test to determine
The 90% confidence interval
From StatTrek, 5\% tails with 3 degrees of freedom corresponds to at-score of 2.3534

$$
\bar{x}-2.3534 s<\text { roll }<\bar{x}+2.3524 s
$$

$$
32.309<\text { roll }<72.690 \quad \text { sample size }=4
$$

The actual 90% confidence interval is

$$
39.704<\text { roll }<61.296 \quad \text { sample size }=\text { infinity }
$$

With a sample size of four, the results are close but a little off

The probabillity of scoring more than 59.5 points.
Find the t -score

$$
t=\left(\frac{59.5-\bar{x}}{s}\right)=0.81563
$$

From StatTrek, this corresponds to a tail with an area of 23.72
There is a $\mathbf{2 3 . 7 2 \%}$ chance of rolling $\mathbf{5 9 . 5}$ or higher

The actual odds are 8.561%. The odds are a little off, but then the sample size is only four.

Problem 7: Using Matlab, determine ten values for Y

```
    \(Y=2 d 4+3 d 6+4 d 8\)
DATA = [];
for \(i=1: 10\)
    \(\mathrm{d} 4=\operatorname{ceil}(4 *\) rand \((6,1)\) );
    d6 = ceil( 6*rand \((5,1)\) );
    d8 = ceil( \(8 *\) rand \((4,1)\) );
    \(\mathrm{Y}=\operatorname{sum}(\mathrm{d} 4)+\operatorname{sum}(\mathrm{d} 6)+\operatorname{sum}(\mathrm{d} 8)\);
    DATA \(=\) [DATA, Y\(]\);
    end
DATA
\(\begin{array}{lllllllllll}\text { DATA } & 60 & 49 & 42 & 55 & 48 & 53 & 62 & 46 & 44 & 53\end{array}\)
```

7a) From this, determine the mean and standard deviation of your data set.

```
x = mean(DATA)
s = std(DATA)
x = 51.2000
s = 6.6131
```

7b) Use a t-test to determine
The 90% confidence interval
5% tails and nine degrees of freedom corresponds to a t-score of 1.8331

$$
\bar{x}-1.8331 s<\text { roll }<\bar{x}+1.8331 s
$$

$$
39.0775<\text { roll }<63.3225 \quad \text { ten rolls }
$$

Note: the actual 90% conficence interval is

$$
39.704<\text { roll }<61.296 \quad \text { infinite rolls }
$$

With only ten rolls, you're pretty close. More rolls gets closer.

The probabillity of scoring more than 59.5 points.
Find the t -score

$$
t=\left(\frac{59.5-\bar{x}}{s}\right)=1.2551
$$

From StatTrek, with 9 degrees of freedom, this t -score corresponds to a tail with an area of 12.053%

$$
\begin{array}{ll}
\mathbf{p}(\mathbf{y}>\mathbf{5 9 . 5})=\mathbf{1 2 . 0 5 3 \%} & \\
p(y>59.5)=8,561 \% & \\
p \text { ten rolls } \\
\text { infinte rolls }
\end{array}
$$

Summary:

Method	\# Die Rolls	90% Conf Interval	$\mathrm{p}($ roll $>59.5)$
Monte-Carlo	100,000	$39.5<$ roll <61.5	8.57%
Normal Dist	0	$39.7<$ roll <61.3	8.56%
t-Test	4	$32.3<$ roll <72.7	23.7%
t-Test	10	$39.1<$ roll <63.3	12.1%

Comment: With statistics, you can get similar results using only a few measurements.

- More measurements give closer results
- You don't need a huge sample size: four to ten is actually pretty good.

