ECE 111 - Homework \#11

Week \#11-ECE 343 Signals- Due Tuesday, April 4th

Problem 1-5) Let $\mathrm{x}(\mathrm{t})$ be a function which is periodic in 2π

$$
x(t)=x(t+2 \pi)
$$

Over the interval $(0,2 \pi) x(t)$ is

$$
x(t)=4 \sin (t)+3
$$

clipped at +6.5 V and +0.5 V . In Matlab:

```
t = [0:0.001:2*pi]';
x = 4*sin(t) + 3;
x = min(x, 6.5);
x = max(x, 0.5);
plot(t,x)
```


$x(t) \quad$ Note that $x(t)$ repeats repeats every 2π seconds

Curve Fitting with a power series:

1) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t) \approx a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

```
>> t = [0:0.001:2*pi]';
x = 4*sin(t) + 3;
x = min(x, 6.5);
x = max(x, 0.5);
plot(t,x)
>> B = [t.^^0, t, t.^2, t.^3 3, t.^^4, t.^5 5];
>> A = inv(B'*B)*B'*X
a0 2.9062
a1 4.4393
a2 -0.3072
a3 -0.9732
a4 0.2551
a5 -0.0176
>> plot(t,x,'b',t,B*A,'r')
>> xlabel('Time (t)')
>>
```


Note:

- This is a decent approximation to $x(t)$, but
- This approximation doesn't help us find $y(t)$

Curve Fitting using a Fourier Series

2) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t)=a_{0}+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+b_{2} \sin (2 t)+a_{3} \cos (3 t)+b_{3} \sin (3 t)
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

```
>> B = [t.^^0, cos(t), sin(t), cos(2*t), sin(2*t), cos(3*t), sin(3*t)];
>> A = inv(B'*B)**'*x
a0 3.2278
a1 0.0000
b1 3.3767
a2 -0.3074
b2 0.0000
a3 0.0000
b3 0.3366
>> plot(t,x,'b',t,B*A,'r')
>> xlabel('Time (t)')
>>
```


Note:

- This is also a decent approximation for $\mathrm{x}(\mathrm{t})$
- The result is useful since the results is a bunch of sine waves
- I like sine waves. I know how to find $\mathrm{y}(\mathrm{t})$ when $\mathrm{x}(\mathrm{t})$ is a sine wave.

3) Determine $x(t)$ in terms of its Fourier Transform out to $3 \mathrm{rad} / \mathrm{sec}$

Using least squares, the answer was:

a0	3.2278
a1	0.0000
b1	3.3767
a2	-0.3074
b2	0.0000
a3	0.0000
b3	0.3366

Another way to get the same result is to compute the Fourier coefficients. Note that you get the same answer (either method is valid)

Moral:

- Fourier Transform is nothing more than a least-squares curve fit
- Where the basis is made up of sine waves

```
>> a0 = mean(x)
a0 = 3.2278
>> a1 = 2*mean(x .* cos(t))
a1=7.7770e-004
>> b1 = 2*mean(x .* sin(t))
b1 = 3.3763
>> a2 = 2*mean(x .* cos(2*t))
a2 = -0.3067
>> b2 = 2*mean(x .* sin(2*t))
b2 = -1.0166e-007
>> a3 = 2*mean(x .* cos(3*t))
a3 = 7.7784e-004
>> b3 = 2*mean(x .* sin(3*t))
b3 = 0.3366
```

>>

Superposition:

Assume X and Y are related by

$$
Y=\left(\frac{2}{s^{2}+0.3 s+1.5}\right) X
$$

4) Using the results from problem $2 \& 3$, determine $y(t)$ assuming

$$
\begin{aligned}
& x(t)=a_{0} \\
& x(t)=3.2278 \\
& s=j 0 \\
& Y=\left(\frac{2}{s^{2}+0.3 s+1.5}\right)_{s=j 0} \cdot(3.2778) \\
& Y=4.3037 \\
& y_{0}(t)=4.3037
\end{aligned}
$$

In Matlab:

```
>> s = 0;
>> X0 = a0;
>> YO = ( 2 / ( ( ^^2 + 0.3*s + 1.5) ) * X0
YO = 4.3037
```

5) Using the results from problem $2 \& 3$, determine $y(t)$ assuming

$$
\begin{aligned}
& x(t)=a_{1} \cos (t)+b_{1} \sin (t) \\
& x(t)=3.3763 \sin (t)
\end{aligned}
$$

Solving using phasors

$$
\begin{aligned}
& s=j 1 \\
& X=0-j 3.3763 \\
& Y=\left(\frac{2}{s^{2}+0.3 s+1.5}\right)_{s=j 1} \cdot(0-j 3.3763) \\
& Y=-5.9558-j 9.9316 \\
& y_{1}(t)=-5.9558 \cos (t)+9.9316 \sin (t)
\end{aligned}
$$

In Matlab

```
>> s = j*1;
>> X1 = a1 - j*b1
X1 = 0.0008-3.3763i
>> s = j*1;
>> Y1 = ( 2 / ( s^2 + 0.3*s + 1.5) ) * X1
Y1 = -5.9558 - 9.9316i
```

6) Using the results from problem $2 \& 3$, determine $y(t)$ assuming

$$
\begin{aligned}
& x(t)=a_{2} \cos (2 t)+b_{2} \sin (2 t) \\
& x(t)=-0.3067 \cos (2 t)
\end{aligned}
$$

Solving using phasors

$$
\begin{aligned}
& s=j 2 \\
& X=-0.3067 \\
& Y=\left(\frac{2}{s^{2}+0.3 s+1.5}\right)_{s=j 2} \cdot(-0.3067) \\
& Y=0.2320+j 0.0557
\end{aligned}
$$

meaning

$$
y_{2}(t)=0.2320 \cos (2 t)-0.0557 \sin (2 t)
$$

In matlab

```
> s = j*2;
>> x2 = a2 - j*b2
x2 = -0.3067 + 0.0000i
>> Y2 = ( 2 / (s^2 + 0.3*s + 1.5) ) * X2
Y2 = 0.2320 + 0.0557i
```

7) Using the results from problem $2 \& 3$, determine $y(t)$ assuming

$$
\begin{aligned}
& x(t)=a_{3} \cos (3 t)+b_{3} \sin (3 t) \\
& x(t)=0.3366 \sin (3 t)
\end{aligned}
$$

Find $\mathrm{y}(\mathrm{t})$ using phasors

$$
\begin{aligned}
& s=j 3 \\
& X=0-j 0.3366 \\
& Y=\left(\frac{2}{s^{2}+0.3 s+1.5}\right)_{s=j 3} \cdot(0-j 0.3366) \\
& Y=-0.0108+j 0.08855
\end{aligned}
$$

meaning

$$
y_{3}(t)=-0.0108 \cos (3 t)-0.08855 \sin (3 t)
$$

In Matlab

```
>> s = j*3;
>> X3 = a3 - j*b3
X3 = 0.0008-0.3366i
>>Y3 = ( 2 / ( S^2 + 0.3*s + 1.5) ) * X3
Y3 = -0.0108 + 0.0885i
```

8) Plot $y(t)$ where $y(t)$ is the sum of the results from problems $4 . .7$

Add up all the inputs to get $\mathrm{x}(\mathrm{t})$
Add up all of the results to get $y(t)$

$$
\begin{array}{cc}
y(t)= & y_{0}+y_{1}+y_{2}+y_{3} \\
y(t)= & 4.3037 \\
& -5.9558 \cos (t)+9.9316 \sin (t) \\
& 0.2320 \cos (2 t)-0.0557 \sin (2 t) \\
& -0.0108 \cos (3 t)-0.08855 \sin (3 t)
\end{array}
$$

In Matlab

```
>> Y = 0*t + Y0;
>> y = y + real(Y1)* cos(t) - imag(Y1)*sin(t);
>> y = Y + real(Y2)*\operatorname{cos(2*t) - imag(Y2)*sin(2*t);}
>> Y = Y + real(Y3)*cos(3*t) - imag(Y3)*sin(3*t);
>> plot(t,x,'b',t,y,'r')
>> xlabel('Time (t)')
```


Note:

- In theory, you have to go out to infinity.
- In practice, the terms usually go to zero pretty fast. You can get a good approximation just using a couple of terms.
By converting $x(t)$ into a bunch of sine waves,
- A problem which is very difficult to solve has been turned into
- Multiple problems that are easy to solve

