ECE 111 - Homework \#10

ECE 343 Signals \& Systems- Due Tuesday, March 28th

Filter Analysis

1) A filter has the following transfer function

$$
Y=\left(\frac{10(s+3)}{(s+1)(s+2)(s+5)}\right) X
$$

1a) What is the differential equation relating X and Y ?
Cross multiply

$$
\begin{aligned}
& (s+1)(s+2)(s+5) Y=10(s+3) X \\
& \left(s^{3}+8 s^{2}+17 s+10\right) Y=(10 s+30) X
\end{aligned}
$$

'sY' means 'the derivative of Y '

$$
\frac{d^{3} y}{d t^{3}}+8 \frac{d^{2} y}{d t^{2}}+17 \frac{d y}{d t}+10 y=10 \frac{d x}{d t}+30 x
$$

or using prime notation

$$
y^{\prime \prime \prime}+8 y^{\prime \prime}+17 y^{\prime}+10 y=10 x^{\prime}+30 x
$$

1b) Find $y(t)$ assuming $x(t)=5$

$$
\begin{aligned}
& s=j 0 \\
& X=5 \\
& Y=\left(\frac{10(s+3)}{(s+1)(s+2)(s+5)}\right)_{s=j 0} . \\
& Y=15
\end{aligned}
$$

meaning

$$
y(t)=15
$$

1c) Find $y(t)$ assuming $x(t)=5 \sin (4 t)$

$$
\begin{aligned}
& s=j 4 \\
& X=0-j 5 \\
& Y=\left(\frac{10(s+3)}{(s+1)(s+2)(s+5)}\right)_{s=j 4} \cdot(0-j 5) \\
& Y=-1.7360+j 1.2123
\end{aligned}
$$

meaning

$$
y(t)=-1.7360 \cos (4 t)-1.2123 \sin (4 t)
$$

2) Plot the gain vs. frequency for this filter from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

- Low-Pass Filter

$$
Y=\left(\frac{20,000}{\left(s^{2}+18.5 s+100\right)\left(s^{2}+7.65 s+100\right)}\right) X
$$

```
>> w = [0:0.01:50]';
>> s = j*W;
>>G = 20000./ ( (s.^2 + 18*s + 100) .* (s.^2 + 7.65*s + 100) );
>> plot(w,abs(G));
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');
```


3) Plot the gain vs. frequency for this filter from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

$$
Y=\left(\frac{100,000 \cdot s^{2}}{(s+1 \pm j 10)(s+1 \pm j 30)}\right) X=\left(\frac{100,000 \cdot s^{2}}{\left(s^{2}+2 s+101\right)\left(s^{2}+2 s+901\right)}\right) X
$$

>> w = [0:0.01:50]';

>> plot(w, abs (G));
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');
>>

Note: Filter analysis is pretty straight forward if you don't mind using complex numbers.
Analyze the gain of the filter at the frequency of the input
Output $=$ Gain * Input

Filter Design

Problem 4-6) Design a filter of the following form so that the gain matches the graph below:

$$
G(s)=\left(\frac{a\left(s^{2}+b\right)}{\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)\left(s^{2}+g s+h\right)}\right)
$$

4) Write an m-file, cost.m, which

- Is passed an array, z , with each element representing (a, b, c, d, e, f, g,h)
- Computes the gain, $G(s)$ for this value of (a, b, c, d, e, f, g,h)
- Computes the difference between the gain, G, and the target (above), and
- Returns the sum-squared error in the gain

Read in eight values for a..h

Compute Gideal as a piecewise linear function

$$
G_{\text {ideal }}=\left\{\begin{array}{cc}
1 & \omega<4 \\
2.2-0.3 \omega & 4<\omega<6 \\
0.4 & 6<\omega<7 \\
0 & \text { otherwise }
\end{array}\right.
$$

Matlab File:

```
function [ J ] = costF( Z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e=z(5);
    f = z(6);
    g=z(7);
    h = z(8);
    w = [0:0.01:10]';
    S = j*W;
    Gideal = 1* (w<4) + (2.2-0.3*W) .* (w >= 4).*(w<6) + 0.4 * (w>=6) .* (w<7);
```



```
    e = abs(Gideal) - abs(G);
    J = sum(e .^ 2);
    plot(w, abs(Gideal),w,abs(G)) ;
    Ylim([0,1.2]);
    pause(0.01);
end
```

5) Use your m-file to determine how 'good' the following filter is:

$$
G(s)=\left(\frac{a\left(s^{2}+b\right)}{\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)\left(s^{2}+g s+h\right)}\right)=\left(\frac{20\left(s^{2}+50\right)}{\left(s^{2}+s+4\right)\left(s^{2}+s+16\right)\left(s^{2}+s+36\right)}\right)
$$

From the command window:

```
a b c d e f g h
>> costF([20,50, 1, 4, 1,16, 1,36])
ans = 101.4488
```


Note:

- It's not a very good approximation of the desired filter
- If you adjust the parameters, you can do better.

6) Use fminsearch() to find the 'best' filter of the form

$$
\begin{aligned}
& G(s)=\left(\frac{a\left(s^{2}+b\right)}{\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)\left(s^{2}+g s+h\right)}\right) \\
& \gg[Z, e]=\text { fminsearch('costF', }[20,50,1,4,1,16,1,36]) \\
& \text { Exiting: Maximum number of function evaluations has been exceeded } \\
& \text { - increase MaxFunEvals option. } \\
& \text { Current function value: } 0.956713
\end{aligned}
$$

Let it run a litte longer (starting at the result) to see if it kicked out due to

- Reaching maximum number of itterations, or
- It found the answer

```
>> [Z,e] = fminsearch('costF',Z)
z =
    ccccccccc
e =
    0.8515
```

Trying again one more time

```
>> [Z,e] = fminsearch('costF',Z)
Z =
```



```
    206.1037
            54.8419
                    5.4227
                            10.9554
                                2.5649
                                22.1712
                                    0.3987
                                    46.8436
e =
    0.8515
```

Looks like this is the best Matlab can do...
a) Give the resulting (a, b, c, d, e, f, g,h) z = a

a	b	c

$\frac{\mathrm{d}}{10.9554}$
e. 2.5649
f
22.1712
g
h
206.1037
54.8419
5.4227
0.3987
46.8436
b) Give the resulting filter, and

$$
\begin{aligned}
& G(s)=\left(\frac{a\left(s^{2}+b\right)}{\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)\left(s^{2}+g s+h\right)}\right) \\
& G(s)=\left(\frac{206.1\left(s^{2}+54.84\right)}{\left(s^{2}+5.42 s+10.95\right)\left(s^{2}+2.56 s+22.17\right)\left(s^{2}+0.39 s+46.84\right)}\right)
\end{aligned}
$$

c) Plot the 'optimal' filter's gain vs. frequency

Note:

- When you take ECE 321 and ECE 311, you'll cover other ways to design filters
- With Matlab, you can design pretty good filters even if you know nothing about filter design

