ECE 111 - Homework \#8

Week \#8: ECE 351 Electromagnetics - Due Tuesday, March 7th

1) Assume the current flowing through a one Henry inductor is shown below. Sketch the voltage.

$$
V=L \frac{d I}{d t}
$$

The derivative (times one) gives the votlage

Problem 2-3) 4-Node RLC Circuit

$$
\mathrm{R}=200 \Omega, \mathrm{C}=0.25 \mathrm{~F}, \mathrm{~L}=0.25 \mathrm{H} . \text { Repeat for } 30 \text { nodes for problems 4-6 }
$$

2) Write the dynamic equations for the following 4 -stage RLC circuit. (i.e. write the node equations) From conservation of current

$$
I_{1}=I_{a}+I_{b}+I_{c}
$$

For capacitors (prime denoted differentiation - easier to write)

$$
\begin{aligned}
& I=C \frac{d V}{d t}=C V^{\prime} \\
& I_{1}=C V_{1}^{\prime}=I_{a}+I_{b}+I_{c}
\end{aligned}
$$

Differentiating again

$$
C V_{1}^{\prime \prime}=I_{a}^{\prime}+I_{b}^{\prime}+I_{c}^{\prime}
$$

For inductors

$$
\begin{aligned}
& V=L \frac{d I}{d t}=L I^{\prime} \\
& V_{0}-V_{1}=L I_{a}^{\prime} \\
& I_{a}^{\prime}=\left(\frac{V_{0}-V_{1}}{L}\right) \\
& I_{c}^{\prime}=\left(\frac{V_{2}-V_{1}}{L}\right)
\end{aligned}
$$

For the resistor

$$
I_{b}=\left(\frac{0-V_{1}}{R}\right)
$$

$$
I_{b}^{\prime}=-\left(\frac{1}{R}\right) V_{1}^{\prime}
$$

Substituting

$$
C V_{1}^{\prime \prime}=\left(\frac{V_{0}-V_{1}}{L}\right)-\left(\frac{1}{R}\right) V_{1}^{\prime}+\left(\frac{V_{2}-V_{1}}{L}\right)
$$

Grouping terms

$$
V_{1}^{\prime \prime}=\left(\frac{1}{L C}\right) V_{0}-\left(\frac{2}{L C}\right) V_{1}+\left(\frac{1}{L C}\right) V_{2}-\left(\frac{1}{R C}\right) V_{1}^{\prime}
$$

ditto for the other nodes (except the last node where there is only a single $1 / \mathrm{LC}$ term)

$$
\begin{aligned}
& V_{2}^{\prime \prime}=\left(\frac{1}{L C}\right) V_{1}-\left(\frac{2}{L C}\right) V_{2}+\left(\frac{1}{L C}\right) V_{3}-\left(\frac{1}{R C}\right) V_{2}^{\prime} \\
& V_{3}^{\prime \prime}=\left(\frac{1}{L C}\right) V_{2}-\left(\frac{2}{L C}\right) V_{3}+\left(\frac{1}{L C}\right) V_{4}-\left(\frac{1}{R C}\right) V_{3}^{\prime} \\
& V_{4}^{\prime \prime}=\left(\frac{1}{L C}\right) V_{3}-\left(\frac{1}{L C}\right) V_{4}-\left(\frac{1}{R C}\right) V_{4}^{\prime}
\end{aligned}
$$

Plugging in numbers $(\mathrm{R}=200, \mathrm{C}=0.25 \mathrm{~F}, \mathrm{~L}=0.25 \mathrm{H})$

$$
\begin{aligned}
& V_{1}^{\prime \prime}=16 V_{0}-32 V_{1}+16 V_{2}-0.02 V_{1}^{\prime} \\
& V_{2}^{\prime \prime}=16 V_{1}-32 V_{2}+16 V_{3}-0.02 V_{2}^{\prime} \\
& V_{3}^{\prime \prime}=16 V_{2}-32 V_{3}+16 V_{4}-0.02 V_{3}^{\prime} \\
& V_{4}^{\prime \prime}=16 V_{3}-16 V_{4}-0.02 V_{4}^{\prime}
\end{aligned}
$$

3) Assume Vin $=10 \mathrm{~V}$ and the initial conditions are zero $\left(\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=0\right)$. Solve for the voltages at $\mathrm{t}=3$ seconds. Hint: Solve numerically using Matlab

Result at 3 seconds

Voltage at $\mathrm{t}=3$ seconds

Matlab Code:

```
V0 = 10;
V1 = 0;
V2 = 0;
V3 = 0;
V4 = 0;
dV1 = 0;
dV2 = 0;
dV3 = 0;
dV4 = 0;
V = [];
t = 0;
dt = 0.01;
while(t < 3)
% Calculate acceleration
        ddV1 = 16*V0 - 32*V1 + 16*V2 - 0.02*dV1;
        ddV2 = 16*V1 - 32*V2 + 16*V3 - 0.02*dV2;
        ddV3 = 16*V2 - 32*V3 + 16*V4 - 0.02*dV3;
        ddV4 = 16*V3 - 16*V4 - 0.02*dV4;
    % Integrate once to get velocity
        dV1 = dV1 + ddV1*dt;
        dV2 = dV2 + ddV2*dt;
        dV3 = dV3 + ddV3*dt;
        dV4 = dV4 + ddV4*dt;
    % integrate again to get position
        V1 = V1 + dV1*dt;
        V2 = V2 + dV2*dt;
        V3 = V3 + dV3*dt;
        V4 = V4 + dV4*dt;
        t = t + dt;
    plot([0,1,2,3,4],[V0,V1,V2,V3,V4],'.-');
    ylim([-10,30]);
    pause(0.01);
    V = [V ; V0, V1, V2, V3, V4];
end
pause(5);
clg
t = [1:length(V) '' * dt;
plot(t,V);
xlabel('Seconds');
xlim([0,3]);
```


Problem 4-6) 30-Node RLC Circuit (hint: modify the program Wave.m)

4) Expand the RLC circuit from problem \#2 to 30 nodes. Plot the voltage at $\mathrm{t}=12$ seconds (just after the reflection) for $1 / \mathrm{R}_{30} \mathrm{C}=0.01$
Note: This is where for-loops are really useful. Rather than copying each equation 30 times, just use a for-loop.

- Node \#1 needs to be separate since V[0] is not valid in Matlab (indicies must be 1 or more)
- Node \#30 needs to be separate since it's equation is slightly different
- Nodes $2 . .29$ can be in a for-loop

Code:

```
V0 = 10;
V = zeros(30,1);
dV = zeros(30,1);
ddV = zeros(30,1);
t = 0;
dt = 0.01;
while(t < 12)
    if (t < 2) VO = 10 * ( ( sin(0.5*pi*t) )^2 );
        else V0 = 0;
    end
% Calculate acceleration
    ddV(1) = 16*V0 - 32*V(1) + 16*V(2) - 0.02*dV(1);
    for n=2:29
        ddV (n) = 16*V(n-1) - 32*V(n) + 16*V(n+1) - 0.02*dV (n);
    end
    ddV(30) = 16*V(29) - 16*V(30) - 0.01*dV(30);
% integrate to get velocity
    dV = dV + ddV*dt;
% integrate again to get position
    V = V + dV*dt;
    t = t + dt;
    plot([0:30],[V0;V],'.-');
    ylim([-15,15]);
    pause(0.01);
end
```


Voltage at $\mathrm{t}=12$ for $1 / \mathrm{RC}(30)=0.01$. If too small, you get a positive reflection.
5) Plot the voltage at $t=8$ seconds for $1 / \mathrm{R}_{30} \mathrm{C}=100$

Voltage at $\mathrm{t}=12$ for $1 / \mathrm{RC}(30)=100$. If too large, you get a negative reflection.
6) Determine experimentally R_{30} so that the reflection is almost zero

By trial and error, $1 / \mathrm{RC}(30)=4.00$

