ECE 111 - Homework \#7

Week \#7: ECE 311 Circuits II - Due Tuesday, February 28th

1) Assume the current flowing through a one Farad capacitor is shown below. Sketch the voltage. Assume $\mathrm{V}(0)=0$. The voltage is the integral of the current (capacitors are integrators)

$$
V=\frac{1}{C} \int I \cdot d t
$$

Since $\mathrm{C}=1 \mathrm{~F}$, the votlage is simply the integral of the current (same as homework \#4)

Problem 2-5: Assume a 10-stage RC filter (V0 .. V10)
10snip

Problem 2) Write the dynamics for this system as a set of ten coupled differential equations:

$$
\begin{aligned}
& I_{1}=C \frac{d V_{1}}{d t}=\sum\left(\text { current to nodeV }{ }_{1}\right) \\
& I_{1}=0.012 \frac{d V_{1}}{d t}=\left(\frac{V_{0}-V_{1}}{10}\right)+\left(\frac{V_{2}-V_{1}}{10}\right)+\left(\frac{0-V_{1}}{500}\right) \\
& 0.012 \frac{d V_{1}}{d t}=\left(\frac{1}{10}\right) V_{0}-\left(\frac{1}{10}+\frac{1}{500}+\frac{1}{10}\right) V_{1}+\left(\frac{1}{10}\right) V_{2} \\
& \frac{d V_{1}}{d t}=8.333 V_{0}-16.833 V_{1}+8.333 V_{2}
\end{aligned}
$$

The same pattern holds for nodes $2 . .9$

$$
\begin{aligned}
& \frac{d V_{2}}{d t}=8.333 V_{1}-16.833 V_{2}+8.333 V_{3} \\
& \frac{d V_{3}}{d t}=8.333 V_{2}-16.833 V_{3}+8.333 V_{4} \\
& \vdots
\end{aligned}
$$

Node \#10 is a little different since there is only one 10-Ohm resistor connected to it

$$
\begin{aligned}
& I_{10}=0.012 \frac{d V_{10}}{d t}=\left(\frac{V_{9}-V_{10}}{10}\right)+\left(\frac{0-V_{10}}{500}\right) \\
& \frac{d V_{10}}{d t}=8.333 V_{9}-8.50 V_{10}
\end{aligned}
$$

Forced Response for a 10-Node RC Filter (heat.m):

Problem 3) Using Matlab, solve these ten differential equations for $0<\mathrm{t}<5 \mathrm{~s}$ assuming

- The initial voltages are zero, and
- $\mathrm{V} 0=10 \mathrm{~V}$.

Matlab Code:

```
% ECE 111 Homework #7
V = zeros(10,1);
dV = zeros(10,1);
V0 = 10;
dt = 0.01;
t = 0;
y = [];
while(t < 10)
    dV(1) = 8.333*V0 - 16.833*V(1) + 8.333*V(2);
    dV(2) = 8.333*V(1) - 16.833*V(2) + 8.333*V(3);
    dV(3) = 8.333*V(2) - 16.833*V(3) + 8.333*V(4);
    dV(4) = 8.333*V(3) - 16.833*V(4) + 8.333*V(5);
    dV(5) = 8.333*V(4) - 16.833*V(5) + 8.333*V(6);
    dV(6) = 8.333*V(5) - 16.833*V(6) + 8.333*V(7);
    dV(7) = 8.333*V(6) - 16.833*V(7) + 8.333*V(8);
    dV(8) = 8.333*V(7) - 16.833*V(8) + 8.333*V(9);
    dV(9) = 8.333*V(8) - 16.833*V(9) + 8.333*V(10);
    dV(10) = 8.333*V(9) - 8.5*V(10);
    V = V + dV*dt;
    t = t + dt;
    plot([0:10], [V0;V], '.-');
    ylim([0,10]);
    pause(0.01);
        y = [y ; V'];
end
pause(3)
t = [1:length(y)]' * dt;
plot(t,y);
xlabel('Time (seconds)');
ylabel('Volts');
```

Resulting Graph (for $0 . .10$ seconds)

Voltage at Eac Node at $\mathrm{t}=10$ second

Votlage of each node vs. Time

Problem 4) Using CircuitLab, find the response of this circuit to a 10 V step input. note: It's OK if you only build this circuit to 3 nodes...

This is almost the same result as Matlab (a little different since there are only four capacitors rather than ten)

Natural Response

Problem 5) Assume V0 $=0 \mathrm{~V}$. Determine the initial conditions of V1..V10 so that

- The maximum voltage is 10 V and
- 5a) The voltages go to zero as slow as possible
- 5b) The voltages go to zero as fast as possible.

Simulate the response for these initial conditions in Matlab.

This is an eigenvector problem

- A is a 10 x 10 matrix
- A has ten eigenvalues (how the system behaves)
- A has ten eigenvectors (what behaves that way)

The slow eigenvector decays as per its eigenvector (red)
The fast eigenvector decays as per its eigenvector (blue)

```
>> A = zeros(10,10);
>> for i=1:9
A(i,i) = -16.833;
A(i+1,i) = 8.333;
A(i,i+1) = 8.333;
end
> A(10,10) = -8.5;
>> A
\begin{tabular}{rrrrr}
-16.8330 & 8.3330 & 0 & 0 & 0 \\
8.3330 & -16.8330 & 8.3330 & 0 & 0 \\
0 & 8.3330 & -16.8330 & 8.3330 & 0 \\
0 & 0 & 8.3330 & -16.8330 & 8.3330 \\
0 & 0 & 0 & 8.3330 & -16.8330 \\
0 & 0 & 0 & 0 & 8.3330 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{tabular}
>> [M,V] = eig(A)
M =
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{fast} & slow \\
\hline -0.1286 & -0.2459 & 0.3412 & 0.4063 & 0.4352 & 0.4255 & 0.3780 & 0.2969 & -0.1894 & 0.0650 \\
\hline 0.2459 & 0.4063 & -0.4255 & -0.2969 & -0.0650 & 0.1894 & 0.3780 & 0.4352 & -0.3412 & 0.1286 \\
\hline -0.3412 & -0.4255 & 0.1894 & -0.1894 & -0.4255 & -0.3412 & -0.0000 & 0.3412 & -0.4255 & 0.1894 \\
\hline 0.4063 & 0.2969 & 0.1894 & 0.4352 & 0.1286 & -0.3412 & -0.3780 & 0.0650 & -0.4255 & 0.2459 \\
\hline -0.4352 & -0.0650 & -0.4255 & -0.1286 & 0.4063 & 0.1894 & -0.3780 & -0.2459 & -0.3412 & 0.2969 \\
\hline 0.4255 & -0.1894 & 0.3412 & -0.3412 & -0.1894 & 0.4255 & -0.0000 & -0.4255 & -0.1894 & 0.3412 \\
\hline -0.3780 & 0.3780 & 0.0000 & 0.3780 & -0.3780 & -0.0000 & 0.3780 & -0.3780 & 0.0000 & 0.3780 \\
\hline 0.2969 & -0.4352 & -0.3412 & 0.0650 & 0.2459 & -0.4255 & 0.3780 & -0.1286 & 0.1894 & 0.4063 \\
\hline -0.1894 & 0.3412 & 0.4255 & -0.4255 & 0.3412 & -0.1894 & 0.0000 & 0.1894 & 0.3412 & 0.4255 \\
\hline 0.0650 & -0.1286 & -0.1894 & 0.2459 & -0.2969 & 0.3412 & -0.3780 & 0.4063 & 0.4255 & 0.4352 \\
\hline
\end{tabular}
V =
    -32.7586 -30.6031 -27.2241 -22.9218
```

Change the Matlab code for the fast eigenvector

```
\% ECE 111 Homework \#7
\(\mathrm{V}=\mathrm{M}(:, 1)\) * 20;
dV \(=\) zeros \((10,1)\);
\(\mathrm{vo}=0\);
\(d t=0.001 ;\)
t \(=0\);
\(y=[] ;\)
while(t < 1)
    \(d V(1)=8.333 * V 0-16.833 * V(1)+8.333 * V(2) ;\)
    etc
```


Fast Eigenvector

The fast eigenvector decays quickly (as $\exp (-32.75 \mathrm{t})$

Slow Eigenvector

The slow eigenvector decays slowly

Problem 6) Assume Vin = 0V. Pick random voltages for V1 .. V10 in the range of (0V, 10V):
$\mathrm{V}=10$ * rand $(10,1)$
Plot the votlages at $\mathrm{t}=2$. Which eigenvector does it look like?

Initial Voltage (red) and votlage after 2 seconds (blue)

After two seconds, the voltage looks like the slow eigenvector

