ECE 111 - Homework \#1

Week \#1: Algebra. Due Tuesday, January 17th

functions poly and roots:

1) Use MATLAB, find the roots the the following polynomials:
a)
$x^{3}-9 x^{2}-49 x+441=0$
$>P=[1,-9,-49,441]$
$\begin{array}{lllll}\mathrm{P} & 1 & -9 & -49 & 441\end{array}$
>> roots (P)
-7. 0000
9.0000
7.0000
b) $x^{4}-85 x^{2}-60 x+864=0$
$\gg P=[1,0,-85,-60,864]$
P =

1	0	-85	-60	864

>> roots (P)
9.0000
-8. 0000
-4. 0000
3.0000
c) $\quad x^{5}-25 x^{4}+144 x^{3}+680 x^{2}-6800 x+6000=0$
$>P=[1,-25,144,680,-6800,6000]$
P =
1
-25
144
680
-6800
6000
>> roots (P)
-6. 0000
10.0001
$10.0000+0.0001 i$
10.0000 - 0.0001i 1.0000
2) Use Matlab to multiply out the following polynomials.
a) $y=(x)(x-10)(x+7)(x-7)$

```
>> R = [0, 10, -7, 7]
```

$\begin{array}{lllll}R= & 0 & 10 & -7 & 7\end{array}$
>> P = poly (R)
$\begin{array}{llllll} \\ P & 1 & -10 & -49 & 490 & 0\end{array}$
meaning

$$
y=x^{4}-10 x^{3}-49 x^{2}+490 x
$$

b) $y=(x+9)(x+1)(x-4)(x-6)(x-9)(x-10)$

```
>> R = [-9,-1,4,6,9,10]
R = }\begin{array}{llllllll}{-9}&{-1}&{4}&{6}&{9}&{10}
>> P = poly(R)
P = 1 llllll
```

meaning

$$
y=x^{6}-19 x^{5}+23 x^{4}+1423 x^{3}-8644 x^{2}+9396 x+19440
$$

Graphing in Matlab

3) Plot the two functions in Matlab and determine all solutions in the range of $-4<x<+4$

$$
\begin{aligned}
& y=\left(\frac{\sin (x)}{x^{2}+1}\right) \\
& y=\cos (x) \\
& \gg \mathrm{x}=[-4: 0.01: 4] \prime ; \\
& \gg y=\sin (x) \cdot /(x . \wedge 2+1) ; \\
& \gg y 2=\cos (x) ; \\
& \gg \operatorname{plot}(x, y 1, x, y 2)
\end{aligned}
$$

There are two solutions over this interval:

$$
(-1.7,-0.21)
$$

$$
(+1.2,+0.4)
$$

4) Plot the two functions in Matlab and determine all solutions in the range of $-4<x<+4$

$$
\begin{aligned}
& y=\frac{1}{4} \exp \left(\frac{x}{2}\right)=\frac{1}{4} e^{x / 2} \\
& y=\sin (2 x)
\end{aligned}
$$

In Matlab:

```
>> x = [-4:0.01:4]';
>> y1 = exp(x/2) / 4;
>> y2 = sin(2*x);
>> plot(x,y1,x,y2)
>>
```

There are four solutions from the graph:

- $(-3.2,+0.1)$
- $(-1.6,+0.2)$
- $(+0.2,+0.25)$
- $(+1.3,+0.5)$

Monte-Carlo Simulations:

Two teams, A and B , are playing a game. Team A has a

- 25% chance of winning any given game (+1 point)
- 30% chance of a tie ($+1 / 2$ point), and
- 45% chance of a loss (+0 points)

5) For Loops: Suppose the two teams play a 5-game match. Determine the probability that

- Team A wins the match (A has more than 2.5 points),
- There is a tie (A has 2.5 points), and
- Team A loses (A has less than 2.5 points)

Win: 25%		Tie: 30%		Loss: 45%	
0	$\mathrm{~W}=\mathrm{W}+1$	0.25	$\mathrm{~T}=\mathrm{T}+1$	0.55	$\mathrm{~L}=\mathrm{L}+1$

This is a for-loop (fixed number of games)

```
W = 0;
T = 0;
L = 0;
for n=1:1e5
    A = 0;
    for i=1:5
        x = rand;
        if(x < 0.2) A = A + 1;
        elseif(x < 0.55) A = A + 0.5;
        else A = A;
        end
    end
    if(A > 2.5) W = W + 1;
    elseif(A == 2.5) T = T + 1;
    else L = L + 1;
    end
end
disp([W,T,L]);
\begin{tabular}{rrr} 
Wins & Ties & Losses \\
15504 & 16816 & 67680
\end{tabular}
```

Result: A has a

- 15.5% chance of winning
- 16.8% chance of a tie
- 67.68% chance of losing

6) While Loops: Suppose the two teams play until one team is up by 2 points. Determine the probability that team A will win the match.

Win: 25%		Tie: 30%	Loss: 45%	
0	$\mathrm{~A}=\mathrm{A}+1$	0.25	$\mathrm{~A}=\mathrm{A}$	0.55
$\mathrm{~A}=\mathrm{A}-1$	1.00			

hint: use a while-loop and keep looping until one team is up by 2 games.

```
W = 0;
L = 0;
for n=1:1e5
    A = 0;
    while(abs(A) < 2)
        x = rand;
        if(x < 0.2) A = A + 1;
        elseif(x < 0.55) A = A;
        else A = A - 1;
        end
    end
    if(A > 0) W = W + 1;
    else L = L + 1;
    end
end
disp([W,L]);
    Wins 
```

With this format, A has a

- 16.416% chance of winning, and
- 83.584% chance of losing

7) Gauss' Dilema: Play the following game 1000 times. (i.e. use Matlab and a for loop along with a while loop)

- It costs $\$ 20$ to play. The pot starts at $\$ 1$.
- Flip a coin. If you get a heads, the pot doubles. If you get a tails, the game is over and you collect the money in the pot.
- Keep flipping until you get a tails.

How much money do you expect to win (or lose) each time you play this game?

Matlab Code:

```
Winnings \(=0\);
for \(n=1: 1 e 3\)
    Pot = 1;
    while(rand < 0.5)
        Pot \(=2 *\) Pot;
    end
    Winnings \(=\) Winnings + Pot - 20;
end
Winnings
```

Results

```
Winnings = -15674
Winnings = -14909
Winnings = -12069
Winnings = 1273
Winnings = -14976
```

Most of the time I'm down \$12k to \$15k after 1000 games

Dice:

8a) Determine the probability distribution for the following:

- Roll three 4 -sided dice, four 6 -sided dice, and five 8 -sided dice.
- The total is the sum of all of the dice.

$$
\mathrm{Y}=3 \mathrm{~d} 4+4 \mathrm{~d} 6+5 \mathrm{~d} 8
$$

Matlab Code:

```
Result = zeros(76,1);
for n=1:1e5
    d4 = ceil(4*rand(1,3));
    d6 = ceil(6*rand(1,4));
    d8 = ceil(8*rand(1,5));
    Y = sum(d4) + sum(d6) + sum(d8);
    Result(Y) = Result(Y) + 1;
end
bar(Result)
xlabel('Y');
ylabel('Frequency in 100k Rolls')
```


$8 b)$ What is the probability of the total being 50 ?

```
>> Result(50) / 1e5
ans = 0.0408
```

There is a $\mathbf{4 . 0 8 \%}$ chance of rolling 50

8c) What is the probability of the total being 50 or more?

```
>> sum(Result(50:76)) / 1e5
ans = 0.1971
```

There is a $\mathbf{1 9 . 7 1 \%}$ chance of rolling $\mathbf{5 0}$ or more
9) Two people are playing a dice game:

- Player A rolls three 4-sided dice, four 6-sided dice, and five 8 -sided dice
- Player B rolls two 100 -sided dice.
- Whoever has the highest total wins.

Determine the probability that

- A wins
- There is a tie, and
- B wins

Matlab Code
$\mathrm{W}=0$;
$\mathrm{T}=0$;
$\mathrm{L}=0$;
for $n=1: 1 e 5$
d4 $=\operatorname{ceil}(4 *$ rand $(1,3))$;
d6 = ceil(6*rand (1,4));
d8 $=$ ceil $(8 *$ rand $(1,5))$;
d100 = ceil (100*rand $(1,2))$;
$A=\operatorname{sum}(d 4)+\operatorname{sum}(d 6)+\operatorname{sum}(d 8)$;
$B=\operatorname{sum}(d 100)$;
if $(A>B) W=W+1$; end
if $(\mathrm{A}==\mathrm{B}) \mathrm{T}=\mathrm{T}+1$; end
if $(A<B) L=L+1$; end
end
disp([W, T, L]) / 1e5

0.0922^{W}	0.0041	0.9037
0.0910	0.0043	0.9047
0.0936	0.0039	0.9024
0.0911	0.0047	0.9042
0.0925	0.0041	0.9035
0.0931	0.0042	0.9027
0.0927	0.0045	0.9028

A has a

- 9.2% chance of winning
- 0.4% chance of a tie, and
- 90.4% chance of losing

